Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge

James Pearson, Rebekah A I Lucas, Zachary J. Schlader, Daniel Gagnon, Craig G. Crandall

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

New Findings: What is the central question of this study? Combined increases in skin and core temperatures reduce tolerance to a simulated haemorrhagic challenge. The aim of this study was to examine the separate and combined influences of increased skin and core temperatures upon tolerance to a simulated haemorrhagic challenge. What is the main finding and its importance? Skin and core temperatures increase during many occupational settings, including military procedures, in hot environments. The study findings demonstrate that both increased skin temperature and increased core temperature can impair tolerance to a simulated haemorrhagic challenge; therefore, a soldier's tolerance to haemorrhagic injury is likely to be impaired during any military activity that results in increased skin and/or core temperatures. Tolerance to a simulated haemorrhagic insult, such as lower-body negative pressure (LBNP), is profoundly reduced when accompanied by whole-body heat stress. The aim of this study was to investigate the separate and combined influence of elevated skin (Tskin) and core temperatures (Tcore) on LBNP tolerance. We hypothesized that elevations in Tskin as well as Tcore would both contribute to reductions in LBNP tolerance and that the reduction in LBNP tolerance would be greatest when both Tskin and Tcore were elevated. Nine participants underwent progressive LBNP to presyncope on four occasions, as follows: (i) control, with neutral Tskin (34.3 ± 0.5°C) and Tcore (36.8 ± 0.2°C); (ii) primarily skin hyperthermia, with high Tskin (37.6 ± 0.2°C) and neutral Tcore (37.1 ± 0.2°C); (iii) primarily core hyperthermia, with neutral Tskin (35.0 ± 0.5°C) and high Tcore (38.3 ± 0.2°C); and (iv) combined skin and core hyperthermia, with high Tskin (38.8 ± 0.6°C) and high Tcore (38.1 ± 0.2°C). The LBNP tolerance was quantified via the cumulative stress index (in millimetres of mercury × minutes). The LBNP tolerance was reduced during the skin hyperthermia (569 ± 151 mmHg min) and core hyperthermia trials (563 ± 194 mmHg min) relative to control conditions (1010 ± 246 mmHg min; both P < 0.05). However, LBNP tolerance did not differ between skin hyperthermia and core hyperthermia trials (P = 0.92). The lowest LBNP tolerance was observed during combined skin and core hyperthermia (257 ± 106 mmHg min; P < 0.05 relative to all other trials). These data indicate that elevated skin temperature, as well as elevated core temperature, can both contribute to reductions in LBNP tolerance in heat-stressed individuals. However, heat stress-induced reductions in LBNP tolerance are greatest in conditions when both skin and core temperatures are elevated.

Original languageEnglish (US)
Pages (from-to)255-264
Number of pages10
JournalExperimental Physiology
Volume102
Issue number2
DOIs
StatePublished - Feb 1 2017

Fingerprint

Lower Body Negative Pressure
Skin Temperature
Fever
Temperature
Skin
Hot Temperature
Military Personnel
Syncope

Keywords

  • cutaneous vascular conductance
  • hyperthermia
  • simulated hemmorhagic tolerance

ASJC Scopus subject areas

  • Physiology

Cite this

Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge. / Pearson, James; Lucas, Rebekah A I; Schlader, Zachary J.; Gagnon, Daniel; Crandall, Craig G.

In: Experimental Physiology, Vol. 102, No. 2, 01.02.2017, p. 255-264.

Research output: Contribution to journalArticle

Pearson, James ; Lucas, Rebekah A I ; Schlader, Zachary J. ; Gagnon, Daniel ; Crandall, Craig G. / Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge. In: Experimental Physiology. 2017 ; Vol. 102, No. 2. pp. 255-264.
@article{c437ade1c0ba470eb55961fd1dab4657,
title = "Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge",
abstract = "New Findings: What is the central question of this study? Combined increases in skin and core temperatures reduce tolerance to a simulated haemorrhagic challenge. The aim of this study was to examine the separate and combined influences of increased skin and core temperatures upon tolerance to a simulated haemorrhagic challenge. What is the main finding and its importance? Skin and core temperatures increase during many occupational settings, including military procedures, in hot environments. The study findings demonstrate that both increased skin temperature and increased core temperature can impair tolerance to a simulated haemorrhagic challenge; therefore, a soldier's tolerance to haemorrhagic injury is likely to be impaired during any military activity that results in increased skin and/or core temperatures. Tolerance to a simulated haemorrhagic insult, such as lower-body negative pressure (LBNP), is profoundly reduced when accompanied by whole-body heat stress. The aim of this study was to investigate the separate and combined influence of elevated skin (Tskin) and core temperatures (Tcore) on LBNP tolerance. We hypothesized that elevations in Tskin as well as Tcore would both contribute to reductions in LBNP tolerance and that the reduction in LBNP tolerance would be greatest when both Tskin and Tcore were elevated. Nine participants underwent progressive LBNP to presyncope on four occasions, as follows: (i) control, with neutral Tskin (34.3 ± 0.5°C) and Tcore (36.8 ± 0.2°C); (ii) primarily skin hyperthermia, with high Tskin (37.6 ± 0.2°C) and neutral Tcore (37.1 ± 0.2°C); (iii) primarily core hyperthermia, with neutral Tskin (35.0 ± 0.5°C) and high Tcore (38.3 ± 0.2°C); and (iv) combined skin and core hyperthermia, with high Tskin (38.8 ± 0.6°C) and high Tcore (38.1 ± 0.2°C). The LBNP tolerance was quantified via the cumulative stress index (in millimetres of mercury × minutes). The LBNP tolerance was reduced during the skin hyperthermia (569 ± 151 mmHg min) and core hyperthermia trials (563 ± 194 mmHg min) relative to control conditions (1010 ± 246 mmHg min; both P < 0.05). However, LBNP tolerance did not differ between skin hyperthermia and core hyperthermia trials (P = 0.92). The lowest LBNP tolerance was observed during combined skin and core hyperthermia (257 ± 106 mmHg min; P < 0.05 relative to all other trials). These data indicate that elevated skin temperature, as well as elevated core temperature, can both contribute to reductions in LBNP tolerance in heat-stressed individuals. However, heat stress-induced reductions in LBNP tolerance are greatest in conditions when both skin and core temperatures are elevated.",
keywords = "cutaneous vascular conductance, hyperthermia, simulated hemmorhagic tolerance",
author = "James Pearson and Lucas, {Rebekah A I} and Schlader, {Zachary J.} and Daniel Gagnon and Crandall, {Craig G.}",
year = "2017",
month = "2",
day = "1",
doi = "10.1113/EP085896",
language = "English (US)",
volume = "102",
pages = "255--264",
journal = "Experimental Physiology",
issn = "0958-0670",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge

AU - Pearson, James

AU - Lucas, Rebekah A I

AU - Schlader, Zachary J.

AU - Gagnon, Daniel

AU - Crandall, Craig G.

PY - 2017/2/1

Y1 - 2017/2/1

N2 - New Findings: What is the central question of this study? Combined increases in skin and core temperatures reduce tolerance to a simulated haemorrhagic challenge. The aim of this study was to examine the separate and combined influences of increased skin and core temperatures upon tolerance to a simulated haemorrhagic challenge. What is the main finding and its importance? Skin and core temperatures increase during many occupational settings, including military procedures, in hot environments. The study findings demonstrate that both increased skin temperature and increased core temperature can impair tolerance to a simulated haemorrhagic challenge; therefore, a soldier's tolerance to haemorrhagic injury is likely to be impaired during any military activity that results in increased skin and/or core temperatures. Tolerance to a simulated haemorrhagic insult, such as lower-body negative pressure (LBNP), is profoundly reduced when accompanied by whole-body heat stress. The aim of this study was to investigate the separate and combined influence of elevated skin (Tskin) and core temperatures (Tcore) on LBNP tolerance. We hypothesized that elevations in Tskin as well as Tcore would both contribute to reductions in LBNP tolerance and that the reduction in LBNP tolerance would be greatest when both Tskin and Tcore were elevated. Nine participants underwent progressive LBNP to presyncope on four occasions, as follows: (i) control, with neutral Tskin (34.3 ± 0.5°C) and Tcore (36.8 ± 0.2°C); (ii) primarily skin hyperthermia, with high Tskin (37.6 ± 0.2°C) and neutral Tcore (37.1 ± 0.2°C); (iii) primarily core hyperthermia, with neutral Tskin (35.0 ± 0.5°C) and high Tcore (38.3 ± 0.2°C); and (iv) combined skin and core hyperthermia, with high Tskin (38.8 ± 0.6°C) and high Tcore (38.1 ± 0.2°C). The LBNP tolerance was quantified via the cumulative stress index (in millimetres of mercury × minutes). The LBNP tolerance was reduced during the skin hyperthermia (569 ± 151 mmHg min) and core hyperthermia trials (563 ± 194 mmHg min) relative to control conditions (1010 ± 246 mmHg min; both P < 0.05). However, LBNP tolerance did not differ between skin hyperthermia and core hyperthermia trials (P = 0.92). The lowest LBNP tolerance was observed during combined skin and core hyperthermia (257 ± 106 mmHg min; P < 0.05 relative to all other trials). These data indicate that elevated skin temperature, as well as elevated core temperature, can both contribute to reductions in LBNP tolerance in heat-stressed individuals. However, heat stress-induced reductions in LBNP tolerance are greatest in conditions when both skin and core temperatures are elevated.

AB - New Findings: What is the central question of this study? Combined increases in skin and core temperatures reduce tolerance to a simulated haemorrhagic challenge. The aim of this study was to examine the separate and combined influences of increased skin and core temperatures upon tolerance to a simulated haemorrhagic challenge. What is the main finding and its importance? Skin and core temperatures increase during many occupational settings, including military procedures, in hot environments. The study findings demonstrate that both increased skin temperature and increased core temperature can impair tolerance to a simulated haemorrhagic challenge; therefore, a soldier's tolerance to haemorrhagic injury is likely to be impaired during any military activity that results in increased skin and/or core temperatures. Tolerance to a simulated haemorrhagic insult, such as lower-body negative pressure (LBNP), is profoundly reduced when accompanied by whole-body heat stress. The aim of this study was to investigate the separate and combined influence of elevated skin (Tskin) and core temperatures (Tcore) on LBNP tolerance. We hypothesized that elevations in Tskin as well as Tcore would both contribute to reductions in LBNP tolerance and that the reduction in LBNP tolerance would be greatest when both Tskin and Tcore were elevated. Nine participants underwent progressive LBNP to presyncope on four occasions, as follows: (i) control, with neutral Tskin (34.3 ± 0.5°C) and Tcore (36.8 ± 0.2°C); (ii) primarily skin hyperthermia, with high Tskin (37.6 ± 0.2°C) and neutral Tcore (37.1 ± 0.2°C); (iii) primarily core hyperthermia, with neutral Tskin (35.0 ± 0.5°C) and high Tcore (38.3 ± 0.2°C); and (iv) combined skin and core hyperthermia, with high Tskin (38.8 ± 0.6°C) and high Tcore (38.1 ± 0.2°C). The LBNP tolerance was quantified via the cumulative stress index (in millimetres of mercury × minutes). The LBNP tolerance was reduced during the skin hyperthermia (569 ± 151 mmHg min) and core hyperthermia trials (563 ± 194 mmHg min) relative to control conditions (1010 ± 246 mmHg min; both P < 0.05). However, LBNP tolerance did not differ between skin hyperthermia and core hyperthermia trials (P = 0.92). The lowest LBNP tolerance was observed during combined skin and core hyperthermia (257 ± 106 mmHg min; P < 0.05 relative to all other trials). These data indicate that elevated skin temperature, as well as elevated core temperature, can both contribute to reductions in LBNP tolerance in heat-stressed individuals. However, heat stress-induced reductions in LBNP tolerance are greatest in conditions when both skin and core temperatures are elevated.

KW - cutaneous vascular conductance

KW - hyperthermia

KW - simulated hemmorhagic tolerance

UR - http://www.scopus.com/inward/record.url?scp=85010495337&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85010495337&partnerID=8YFLogxK

U2 - 10.1113/EP085896

DO - 10.1113/EP085896

M3 - Article

C2 - 27981648

AN - SCOPUS:85010495337

VL - 102

SP - 255

EP - 264

JO - Experimental Physiology

JF - Experimental Physiology

SN - 0958-0670

IS - 2

ER -