Embryonic chimeras with human pluripotent stem cells

Alejandro De Los Angeles, Masahiro Sakurai, Jun Wu

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Scopus citations

Abstract

Human pluripotent stem (PS) cells can be isolated from preimplantation embryos or by reprogramming of somatic cells or germline progenitors. Human PS cells are considered the “holy grail” of regenerative medicine because they have the potential to form all cell types of the adult body. Because of their similarity to humans, nonhuman primate (NHP) PS cells are also important models for studying human biology and disease, as well as for developing therapeutic strategies and test bed for cell replacement therapy. This chapter describes adjusted methods for cultivation of PS cells from different primate species, including African green monkey, rhesus monkey, chimpanzee, and human. Supplementation of E8 medium and inhibitors of the Tankyrase and GSK3 kinases to various primate PS cell media reduce line-dependent predisposition for spontaneous differentiation in conventional PS cell cultures. We provide methods for basic characterization of primate PS cell lines, which include immunostaining for pluripotency markers such as OCT4 and TRA-1-60, as well as in vivo teratoma formation assay. We provide methods for generating alternative PS cells including region-selective primed PS cells, two different versions of naïve-like cells, and recently reported extended pluripotent stem (EPS) cells. These derivations are achieved by acclimation of conventional PS cells to target media, episomal reprogramming of somatic cells, or resetting conventional PS cells to a naïve-like state by overexpression of KLF2 and NANOG. We also provide methods for isolation of PS cells from human blastocysts. We describe how to generate interspecies primate-mouse chimeras at the blastocyst and postimplantation embryo stages. Systematic evaluation of the chimeric competency of human and primate PS cells will aid in efforts to overcome species barriers and achieve higher grade chimerism in postimplantation conceptuses that could enable organ-specific enrichment of human xenogeneic PS cell derivatives in large animals such as pigs and sheep.

Original languageEnglish (US)
Title of host publicationMethods in Molecular Biology
PublisherHumana Press Inc.
Pages125-151
Number of pages27
DOIs
StatePublished - 2019

Publication series

NameMethods in Molecular Biology
Volume2005
ISSN (Print)1064-3745
ISSN (Electronic)1940-6029

Keywords

  • 5iLAF
  • Embryonic stem cell
  • Extended pluripotent stem cells
  • FGF
  • GSK3
  • Human pluripotent stem cells
  • Induced pluripotent stem cell
  • Interspecies chimeras
  • KLF2
  • KLF4
  • LCDM
  • LIN28
  • LMYC
  • Monkey pluripotent stem cells
  • NANOG
  • Naïve-like pluripotent stem cells
  • Nonhuman primates
  • OCT4
  • Pluripotent stem cells
  • Primate pluripotent stem cells
  • Primates
  • Primed pluripotent stem cells
  • Region-selective
  • Reprogramming
  • SOX2
  • TNKS1/2
  • Tankyrase
  • WNT
  • p53
  • t2iL

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'Embryonic chimeras with human pluripotent stem cells'. Together they form a unique fingerprint.

Cite this