Entorhinal cortical Island cells regulate temporal association learning with long trace period

Jun Yokose, William D. Marks, Naoki Yamamoto, Sachie K. Ogawa, Takashi Kitamura

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial for TAL. Successful TAL depends on the strength of event stimuli and the duration of the temporal gap between events. Whereas it has been demonstrated that the neural input from pyramidal cells in layer II of MEC, referred to as Island cells, to inhibitory neurons in dorsal hippocampal CA1 controls TAL when the strength of event stimuli is weak, it remains unknown whether Island cells regulate TAL with long trace periods as well. To understand the role of Island cells in regulating the duration of the learnable trace period in TAL, we used Pavlovian trace fear conditioning (TFC) with a 60-sec long trace period (long trace fear conditioning [L-TFC]) coupled with optogenetic and chemogenetic neural activity manipulations as well as cell type-specific neural ablation. We found that ablation of Island cells in MECII partially increases L-TFC performance. Chemogenetic manipulation of Island cells causes differential effectiveness in Island cell activity and leads to a circuit imbalance that disrupts L-TFC. However, optogenetic terminal inhibition of Island cell input to dorsal hippocampal CA1 during the temporal association period allows for long trace intervals to be learned in TFC. These results demonstrate that Island cells have a critical role in regulating the duration of time bridgeable between associated events in TAL.

Original languageEnglish (US)
Pages (from-to)319-328
Number of pages10
JournalLearning & memory (Cold Spring Harbor, N.Y.)
Volume28
Issue number9
DOIs
StatePublished - Sep 1 2021

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Cognitive Neuroscience
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Entorhinal cortical Island cells regulate temporal association learning with long trace period'. Together they form a unique fingerprint.

Cite this