Estrogen formation in stromal cells of adipose tissue of women

Induction by glucocorticosteroids

E. R. Simpson, G. E. Ackerman, M. E. Smith, C. R. Mendelson

Research output: Contribution to journalArticle

204 Citations (Scopus)

Abstract

Stromal cells prepared from adipose tissue of women were maintained in monolayer culture to study the regulation of aromatase activity by hormones. Aromatase activity was stimulated 20- to 100-fold by dexamethasone at a concentration of 250 nM. Half-maximal stimulation of aromatase activity was attained at a dexamethasone concentration of 2.7 nM. The stimulatory effect of dexamethasone was apparent after a preincubation time of 4 hr, and stimulation was maximal after 24 hr of preincubation. The stimulatory effect of dexamethasone was observed only when fetal calf serum also was present in the culture medium. Of the various steroids tested, dexamethasone was the most potent in stimulating aromatase activity. Cortisol was less effective than dexamethasone, whereas corticosterone, at a concentration of 250 nM, caused only a small stimulation of aromatase activity. Progesterone and deoxycorticosterone (250 nM) did not affect aromatase activity. Cytosolic fractions prepared from stromal cells that had been maintained in monolayer culture were found to contain a homogenous population of sites that specifically bound [3H]dexameghasone with relatively high affinity (Kd=2.9 nM) and low capacity (38 fmol per mg of protein). The stimulatory effect of dexamethasone on aromatase activity was prevented by simultaneous incubation with cortisol 21-mesylate (0.1-10 μM), a compound known to block the binding of glucocorticosteroids to cytoplasmic receptors. The stimulatory effect of dexamethasone also was prevented by incubation of the cells with cycloheximide or actinomycin D. These findings are suggestive that glucocorticosteroids act to increase aromatase activity in stromal cells by inducing the synthesis of new enzyme protein.

Original languageEnglish (US)
Pages (from-to)5690-5694
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume78
Issue number9 II
StatePublished - 1981

Fingerprint

Aromatase
Stromal Cells
Dexamethasone
Adipose Tissue
Estrogens
Desoxycorticosterone
Dactinomycin
Cycloheximide
Cytoplasmic and Nuclear Receptors
Corticosterone
Progesterone
Culture Media
Hydrocortisone
Proteins
Steroids
Hormones
Enzymes
Serum

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

@article{3b9e15f553554af58bb864693ff1a40e,
title = "Estrogen formation in stromal cells of adipose tissue of women: Induction by glucocorticosteroids",
abstract = "Stromal cells prepared from adipose tissue of women were maintained in monolayer culture to study the regulation of aromatase activity by hormones. Aromatase activity was stimulated 20- to 100-fold by dexamethasone at a concentration of 250 nM. Half-maximal stimulation of aromatase activity was attained at a dexamethasone concentration of 2.7 nM. The stimulatory effect of dexamethasone was apparent after a preincubation time of 4 hr, and stimulation was maximal after 24 hr of preincubation. The stimulatory effect of dexamethasone was observed only when fetal calf serum also was present in the culture medium. Of the various steroids tested, dexamethasone was the most potent in stimulating aromatase activity. Cortisol was less effective than dexamethasone, whereas corticosterone, at a concentration of 250 nM, caused only a small stimulation of aromatase activity. Progesterone and deoxycorticosterone (250 nM) did not affect aromatase activity. Cytosolic fractions prepared from stromal cells that had been maintained in monolayer culture were found to contain a homogenous population of sites that specifically bound [3H]dexameghasone with relatively high affinity (Kd=2.9 nM) and low capacity (38 fmol per mg of protein). The stimulatory effect of dexamethasone on aromatase activity was prevented by simultaneous incubation with cortisol 21-mesylate (0.1-10 μM), a compound known to block the binding of glucocorticosteroids to cytoplasmic receptors. The stimulatory effect of dexamethasone also was prevented by incubation of the cells with cycloheximide or actinomycin D. These findings are suggestive that glucocorticosteroids act to increase aromatase activity in stromal cells by inducing the synthesis of new enzyme protein.",
author = "Simpson, {E. R.} and Ackerman, {G. E.} and Smith, {M. E.} and Mendelson, {C. R.}",
year = "1981",
language = "English (US)",
volume = "78",
pages = "5690--5694",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "9 II",

}

TY - JOUR

T1 - Estrogen formation in stromal cells of adipose tissue of women

T2 - Induction by glucocorticosteroids

AU - Simpson, E. R.

AU - Ackerman, G. E.

AU - Smith, M. E.

AU - Mendelson, C. R.

PY - 1981

Y1 - 1981

N2 - Stromal cells prepared from adipose tissue of women were maintained in monolayer culture to study the regulation of aromatase activity by hormones. Aromatase activity was stimulated 20- to 100-fold by dexamethasone at a concentration of 250 nM. Half-maximal stimulation of aromatase activity was attained at a dexamethasone concentration of 2.7 nM. The stimulatory effect of dexamethasone was apparent after a preincubation time of 4 hr, and stimulation was maximal after 24 hr of preincubation. The stimulatory effect of dexamethasone was observed only when fetal calf serum also was present in the culture medium. Of the various steroids tested, dexamethasone was the most potent in stimulating aromatase activity. Cortisol was less effective than dexamethasone, whereas corticosterone, at a concentration of 250 nM, caused only a small stimulation of aromatase activity. Progesterone and deoxycorticosterone (250 nM) did not affect aromatase activity. Cytosolic fractions prepared from stromal cells that had been maintained in monolayer culture were found to contain a homogenous population of sites that specifically bound [3H]dexameghasone with relatively high affinity (Kd=2.9 nM) and low capacity (38 fmol per mg of protein). The stimulatory effect of dexamethasone on aromatase activity was prevented by simultaneous incubation with cortisol 21-mesylate (0.1-10 μM), a compound known to block the binding of glucocorticosteroids to cytoplasmic receptors. The stimulatory effect of dexamethasone also was prevented by incubation of the cells with cycloheximide or actinomycin D. These findings are suggestive that glucocorticosteroids act to increase aromatase activity in stromal cells by inducing the synthesis of new enzyme protein.

AB - Stromal cells prepared from adipose tissue of women were maintained in monolayer culture to study the regulation of aromatase activity by hormones. Aromatase activity was stimulated 20- to 100-fold by dexamethasone at a concentration of 250 nM. Half-maximal stimulation of aromatase activity was attained at a dexamethasone concentration of 2.7 nM. The stimulatory effect of dexamethasone was apparent after a preincubation time of 4 hr, and stimulation was maximal after 24 hr of preincubation. The stimulatory effect of dexamethasone was observed only when fetal calf serum also was present in the culture medium. Of the various steroids tested, dexamethasone was the most potent in stimulating aromatase activity. Cortisol was less effective than dexamethasone, whereas corticosterone, at a concentration of 250 nM, caused only a small stimulation of aromatase activity. Progesterone and deoxycorticosterone (250 nM) did not affect aromatase activity. Cytosolic fractions prepared from stromal cells that had been maintained in monolayer culture were found to contain a homogenous population of sites that specifically bound [3H]dexameghasone with relatively high affinity (Kd=2.9 nM) and low capacity (38 fmol per mg of protein). The stimulatory effect of dexamethasone on aromatase activity was prevented by simultaneous incubation with cortisol 21-mesylate (0.1-10 μM), a compound known to block the binding of glucocorticosteroids to cytoplasmic receptors. The stimulatory effect of dexamethasone also was prevented by incubation of the cells with cycloheximide or actinomycin D. These findings are suggestive that glucocorticosteroids act to increase aromatase activity in stromal cells by inducing the synthesis of new enzyme protein.

UR - http://www.scopus.com/inward/record.url?scp=0001246894&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001246894&partnerID=8YFLogxK

M3 - Article

VL - 78

SP - 5690

EP - 5694

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 9 II

ER -