Evidence for apoptosis in dystrophin deficient muscular dystrophy

R. J. Organ, S. Bottomley, S. X. Skapek

Research output: Contribution to journalArticle

Abstract

Duchenne's muscular dystrophy (DMD), the most common form of muscular dystrophy in children, is caused by a mutation in the gene encoding the protein dystrophin, which is normally found in muscle cells. Muscle fibers lacking dystrophin go through cycles of degeneration and regeneration due to intense stimulation by growth factors. However, despite growth factor stimulation there is gradually progressive muscle cell death. The mechanism by which the absence of dystrophin leads to cell death is not well understood. Mdx mice, a murine model of DMD, have a mutation in the dystrophin gene and display transient DMD-like muscle pathology between 2 and 8 weeks of age. Using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), an accepted indicator of apoptosis, we demonstrated the presence of apoptotic nuclei in mdx mice but not in control wild type mice (p< .05). We showed a temporal association between apoptosis and pathologic changes in the muscle, as evidenced by central nuclei, a marker of myocyte damage. Furthermore, we used electron microscopy to demonstrate membrane blebbing, condensed chromatin in nuclei, and apoptotic bodies in dystrophin deficient muscle cells. Together, these data suggest that the loss of dystrophin activates a program that leads to muscle cell death by an apoptotic mechanism. We are presently conducting experiments to evaluate whether the intense growth factor stimulation in dystrophin deficient muscle cells may lead to the aberrant expression of genes that normally drive cellular proliferation. We hypothesize that the aberrant expression of these proliferation-associated genes may secondarily activate the apoptotic program in dystrophin deficient muscle cells.

Original languageEnglish (US)
JournalJournal of Investigative Medicine
Volume47
Issue number2
StatePublished - Feb 1999

Fingerprint

Dystrophin
Muscular Dystrophies
Muscle
Muscle Cells
Apoptosis
Cell death
Inbred mdx Mouse
Cells
Intercellular Signaling Peptides and Proteins
Cell Death
Duchenne Muscular Dystrophy
Genes
Muscles
Mutation
DNA Nucleotidylexotransferase
Gene encoding
Blister
Pathology
Chromatin
Regeneration

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Evidence for apoptosis in dystrophin deficient muscular dystrophy. / Organ, R. J.; Bottomley, S.; Skapek, S. X.

In: Journal of Investigative Medicine, Vol. 47, No. 2, 02.1999.

Research output: Contribution to journalArticle

@article{525eafcc0fca446aa0d72f88ba1144a4,
title = "Evidence for apoptosis in dystrophin deficient muscular dystrophy",
abstract = "Duchenne's muscular dystrophy (DMD), the most common form of muscular dystrophy in children, is caused by a mutation in the gene encoding the protein dystrophin, which is normally found in muscle cells. Muscle fibers lacking dystrophin go through cycles of degeneration and regeneration due to intense stimulation by growth factors. However, despite growth factor stimulation there is gradually progressive muscle cell death. The mechanism by which the absence of dystrophin leads to cell death is not well understood. Mdx mice, a murine model of DMD, have a mutation in the dystrophin gene and display transient DMD-like muscle pathology between 2 and 8 weeks of age. Using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), an accepted indicator of apoptosis, we demonstrated the presence of apoptotic nuclei in mdx mice but not in control wild type mice (p< .05). We showed a temporal association between apoptosis and pathologic changes in the muscle, as evidenced by central nuclei, a marker of myocyte damage. Furthermore, we used electron microscopy to demonstrate membrane blebbing, condensed chromatin in nuclei, and apoptotic bodies in dystrophin deficient muscle cells. Together, these data suggest that the loss of dystrophin activates a program that leads to muscle cell death by an apoptotic mechanism. We are presently conducting experiments to evaluate whether the intense growth factor stimulation in dystrophin deficient muscle cells may lead to the aberrant expression of genes that normally drive cellular proliferation. We hypothesize that the aberrant expression of these proliferation-associated genes may secondarily activate the apoptotic program in dystrophin deficient muscle cells.",
author = "Organ, {R. J.} and S. Bottomley and Skapek, {S. X.}",
year = "1999",
month = "2",
language = "English (US)",
volume = "47",
journal = "Journal of Investigative Medicine",
issn = "1081-5589",
publisher = "Lippincott Williams and Wilkins",
number = "2",

}

TY - JOUR

T1 - Evidence for apoptosis in dystrophin deficient muscular dystrophy

AU - Organ, R. J.

AU - Bottomley, S.

AU - Skapek, S. X.

PY - 1999/2

Y1 - 1999/2

N2 - Duchenne's muscular dystrophy (DMD), the most common form of muscular dystrophy in children, is caused by a mutation in the gene encoding the protein dystrophin, which is normally found in muscle cells. Muscle fibers lacking dystrophin go through cycles of degeneration and regeneration due to intense stimulation by growth factors. However, despite growth factor stimulation there is gradually progressive muscle cell death. The mechanism by which the absence of dystrophin leads to cell death is not well understood. Mdx mice, a murine model of DMD, have a mutation in the dystrophin gene and display transient DMD-like muscle pathology between 2 and 8 weeks of age. Using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), an accepted indicator of apoptosis, we demonstrated the presence of apoptotic nuclei in mdx mice but not in control wild type mice (p< .05). We showed a temporal association between apoptosis and pathologic changes in the muscle, as evidenced by central nuclei, a marker of myocyte damage. Furthermore, we used electron microscopy to demonstrate membrane blebbing, condensed chromatin in nuclei, and apoptotic bodies in dystrophin deficient muscle cells. Together, these data suggest that the loss of dystrophin activates a program that leads to muscle cell death by an apoptotic mechanism. We are presently conducting experiments to evaluate whether the intense growth factor stimulation in dystrophin deficient muscle cells may lead to the aberrant expression of genes that normally drive cellular proliferation. We hypothesize that the aberrant expression of these proliferation-associated genes may secondarily activate the apoptotic program in dystrophin deficient muscle cells.

AB - Duchenne's muscular dystrophy (DMD), the most common form of muscular dystrophy in children, is caused by a mutation in the gene encoding the protein dystrophin, which is normally found in muscle cells. Muscle fibers lacking dystrophin go through cycles of degeneration and regeneration due to intense stimulation by growth factors. However, despite growth factor stimulation there is gradually progressive muscle cell death. The mechanism by which the absence of dystrophin leads to cell death is not well understood. Mdx mice, a murine model of DMD, have a mutation in the dystrophin gene and display transient DMD-like muscle pathology between 2 and 8 weeks of age. Using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), an accepted indicator of apoptosis, we demonstrated the presence of apoptotic nuclei in mdx mice but not in control wild type mice (p< .05). We showed a temporal association between apoptosis and pathologic changes in the muscle, as evidenced by central nuclei, a marker of myocyte damage. Furthermore, we used electron microscopy to demonstrate membrane blebbing, condensed chromatin in nuclei, and apoptotic bodies in dystrophin deficient muscle cells. Together, these data suggest that the loss of dystrophin activates a program that leads to muscle cell death by an apoptotic mechanism. We are presently conducting experiments to evaluate whether the intense growth factor stimulation in dystrophin deficient muscle cells may lead to the aberrant expression of genes that normally drive cellular proliferation. We hypothesize that the aberrant expression of these proliferation-associated genes may secondarily activate the apoptotic program in dystrophin deficient muscle cells.

UR - http://www.scopus.com/inward/record.url?scp=33750103322&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33750103322&partnerID=8YFLogxK

M3 - Article

VL - 47

JO - Journal of Investigative Medicine

JF - Journal of Investigative Medicine

SN - 1081-5589

IS - 2

ER -