Evidence for functional alterations in the skeletal muscle mechanoreflex and metaboreflex in hypertensive rats

Anna K. Leal, Maurice A. Williams, Mary G. Garry, Jere H. Mitchell, Scott A. Smith

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Exercise in hypertensive individuals elicits exaggerated increases in mean arterial pressure (MAP) and heart rate (HR) that potentially enhance the risk for adverse cardiac events or stroke. Evidence suggests that exercise pressor reflex function (EPR; a reflex originating in skeletal muscle) is exaggerated in this disease and contributes significantly to the potentiated cardiovascular responsiveness. However, the mechanism of EPR overactivity in hypertension remains unclear. EPR function is mediated by the muscle mechanoreflex (activated by stimulation of mechanically sensitive afferent fibers) and metaboreflex (activated by stimulation of chemically sensitive afferent fibers). Therefore, we hypothesized the enhanced cardiovascular response mediated by the EPR in hypertension is due to functional alterations in the muscle mechanoreflex and metaboreflex. To test this hypothesis, mechanically and chemically sensitive afferent fibers were selectively activated in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) decerebrate rats. Activation of mechanically sensitive fibers by passively stretching hindlimb muscle induced significantly greater increases in MAP and HR in SHR than WKY over a wide range of stimulus intensities. Activation of chemically sensitive fibers by administering capsaicin (0.01-1.00 μg/100 μl) into the hindlimb arterial supply induced increases in MAP that were significantly greater in SHR compared with WKY. However, HR responses to capsaicin were not different between the two groups at any dose. This data is consistent with the concept that the abnormal EPR control of MAP described previously in hypertension is mediated by both mechanoreflex and metaboreflex overactivity. In contrast, the previously reported alterations in the EPR control of HR in hypertension may be principally due to overactivity of the mechanically sensitive component of the reflex.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume295
Issue number4
DOIs
StatePublished - Oct 2008

Fingerprint

Arterial Pressure
Skeletal Muscle
Heart Rate
Hypertension
Reflex
Capsaicin
Hindlimb
Muscles
Inbred SHR Rats
Stroke

Keywords

  • Blood pressure
  • Heart rate
  • Muscle afferents

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)
  • Cardiology and Cardiovascular Medicine

Cite this

@article{531aed5159fb49929d8fdfd2bbe37006,
title = "Evidence for functional alterations in the skeletal muscle mechanoreflex and metaboreflex in hypertensive rats",
abstract = "Exercise in hypertensive individuals elicits exaggerated increases in mean arterial pressure (MAP) and heart rate (HR) that potentially enhance the risk for adverse cardiac events or stroke. Evidence suggests that exercise pressor reflex function (EPR; a reflex originating in skeletal muscle) is exaggerated in this disease and contributes significantly to the potentiated cardiovascular responsiveness. However, the mechanism of EPR overactivity in hypertension remains unclear. EPR function is mediated by the muscle mechanoreflex (activated by stimulation of mechanically sensitive afferent fibers) and metaboreflex (activated by stimulation of chemically sensitive afferent fibers). Therefore, we hypothesized the enhanced cardiovascular response mediated by the EPR in hypertension is due to functional alterations in the muscle mechanoreflex and metaboreflex. To test this hypothesis, mechanically and chemically sensitive afferent fibers were selectively activated in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) decerebrate rats. Activation of mechanically sensitive fibers by passively stretching hindlimb muscle induced significantly greater increases in MAP and HR in SHR than WKY over a wide range of stimulus intensities. Activation of chemically sensitive fibers by administering capsaicin (0.01-1.00 μg/100 μl) into the hindlimb arterial supply induced increases in MAP that were significantly greater in SHR compared with WKY. However, HR responses to capsaicin were not different between the two groups at any dose. This data is consistent with the concept that the abnormal EPR control of MAP described previously in hypertension is mediated by both mechanoreflex and metaboreflex overactivity. In contrast, the previously reported alterations in the EPR control of HR in hypertension may be principally due to overactivity of the mechanically sensitive component of the reflex.",
keywords = "Blood pressure, Heart rate, Muscle afferents",
author = "Leal, {Anna K.} and Williams, {Maurice A.} and Garry, {Mary G.} and Mitchell, {Jere H.} and Smith, {Scott A.}",
year = "2008",
month = "10",
doi = "10.1152/ajpheart.01365.2007",
language = "English (US)",
volume = "295",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Evidence for functional alterations in the skeletal muscle mechanoreflex and metaboreflex in hypertensive rats

AU - Leal, Anna K.

AU - Williams, Maurice A.

AU - Garry, Mary G.

AU - Mitchell, Jere H.

AU - Smith, Scott A.

PY - 2008/10

Y1 - 2008/10

N2 - Exercise in hypertensive individuals elicits exaggerated increases in mean arterial pressure (MAP) and heart rate (HR) that potentially enhance the risk for adverse cardiac events or stroke. Evidence suggests that exercise pressor reflex function (EPR; a reflex originating in skeletal muscle) is exaggerated in this disease and contributes significantly to the potentiated cardiovascular responsiveness. However, the mechanism of EPR overactivity in hypertension remains unclear. EPR function is mediated by the muscle mechanoreflex (activated by stimulation of mechanically sensitive afferent fibers) and metaboreflex (activated by stimulation of chemically sensitive afferent fibers). Therefore, we hypothesized the enhanced cardiovascular response mediated by the EPR in hypertension is due to functional alterations in the muscle mechanoreflex and metaboreflex. To test this hypothesis, mechanically and chemically sensitive afferent fibers were selectively activated in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) decerebrate rats. Activation of mechanically sensitive fibers by passively stretching hindlimb muscle induced significantly greater increases in MAP and HR in SHR than WKY over a wide range of stimulus intensities. Activation of chemically sensitive fibers by administering capsaicin (0.01-1.00 μg/100 μl) into the hindlimb arterial supply induced increases in MAP that were significantly greater in SHR compared with WKY. However, HR responses to capsaicin were not different between the two groups at any dose. This data is consistent with the concept that the abnormal EPR control of MAP described previously in hypertension is mediated by both mechanoreflex and metaboreflex overactivity. In contrast, the previously reported alterations in the EPR control of HR in hypertension may be principally due to overactivity of the mechanically sensitive component of the reflex.

AB - Exercise in hypertensive individuals elicits exaggerated increases in mean arterial pressure (MAP) and heart rate (HR) that potentially enhance the risk for adverse cardiac events or stroke. Evidence suggests that exercise pressor reflex function (EPR; a reflex originating in skeletal muscle) is exaggerated in this disease and contributes significantly to the potentiated cardiovascular responsiveness. However, the mechanism of EPR overactivity in hypertension remains unclear. EPR function is mediated by the muscle mechanoreflex (activated by stimulation of mechanically sensitive afferent fibers) and metaboreflex (activated by stimulation of chemically sensitive afferent fibers). Therefore, we hypothesized the enhanced cardiovascular response mediated by the EPR in hypertension is due to functional alterations in the muscle mechanoreflex and metaboreflex. To test this hypothesis, mechanically and chemically sensitive afferent fibers were selectively activated in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) decerebrate rats. Activation of mechanically sensitive fibers by passively stretching hindlimb muscle induced significantly greater increases in MAP and HR in SHR than WKY over a wide range of stimulus intensities. Activation of chemically sensitive fibers by administering capsaicin (0.01-1.00 μg/100 μl) into the hindlimb arterial supply induced increases in MAP that were significantly greater in SHR compared with WKY. However, HR responses to capsaicin were not different between the two groups at any dose. This data is consistent with the concept that the abnormal EPR control of MAP described previously in hypertension is mediated by both mechanoreflex and metaboreflex overactivity. In contrast, the previously reported alterations in the EPR control of HR in hypertension may be principally due to overactivity of the mechanically sensitive component of the reflex.

KW - Blood pressure

KW - Heart rate

KW - Muscle afferents

UR - http://www.scopus.com/inward/record.url?scp=57049131635&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57049131635&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.01365.2007

DO - 10.1152/ajpheart.01365.2007

M3 - Article

C2 - 18641268

AN - SCOPUS:57049131635

VL - 295

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 4

ER -