Evidence for H+ secretion by the in vivo canine gallbladder

Robert V Rege, Edward W. Moore

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

In humans and most other species, a decline in pH of gallbladder contents occurs during the concentration of bile. Recent in vitro studies in rabbit, guinea pig, and Necturus gallbladders have strongly suggested mucosal H+ secretion during sodium reabsorption, presumably representing a Na+ H+ exchange. The present in vivo studies are the first attempt to determine whether H+ secretion by the gallbladder can be demonstrated in the living animal. Gallbladder bile was obtained from 27 anesthetized dogs after 12-24-h fasts; 12 samples of common duct bile were also obtained in 3 dogs during variable taurocholate infusion. In common duct bile, observed ranges were as follows: pH, 7.3-7.85; CO2 partial pressure (Pco2), 21-32 mmHg; total CO2 concentration ([TCO2]), 16.4-41.4 mM; total bile salt concentration ([TBS]), 16-93 mM; and [Na], 153-192 mM. In gallbladder bile, respective ranges were as follows: pH, 5.72-7.29; Pco2, 36-101 mmHg; [TCO2], 1.21-15.5 mM; [TBS], 150-305 mM; and [Na], 199-266 mM. In all samples [Na] was linearly related to [TBS]. Carbon dioxide partial pressure increased from a mean of 27.3 mmHg in common duct bile to >100 mmHg in gallbladder bile at [TBS] = 180 mM, then declined to ~36 mmHg as [TBS] increased to >300 mM. Peak Pco2 occurred at pH ~6.4-6.6, then declined as pH decreased to ~5.7. Bile to plasma Pco2 ratios increased from a mean of 1.08 in common duct samples to >2.0 in gallbladder samples at pH ~6.3, then declined to ~1.0 in fully concentrated bile. If the high Pco2 values in bile were solely due to tissue CO2 production, a sustained increase in Pco2 throughout Na+ reabsorption might be expected. The results strongly suggest H+ secretion (HCO3 - neutralization), as peak Pco2 occurred when [TBS] was only about 180 mM, long before sodium absorption was complete. It is hypothesized that H+ secretion may have important favorable effects on calcium lithogenicity, reducing the likelihood of the formation of CaCO3 - containing gallstones.

Original languageEnglish (US)
Pages (from-to)281-289
Number of pages9
JournalGastroenterology
Volume92
Issue number2
StatePublished - 1987

Fingerprint

Gallbladder
Bile
Canidae
Bile Acids and Salts
Common Bile Duct
Partial Pressure
Necturus
Sodium
Dogs
Taurocholic Acid
Gallstones
Carbon Dioxide
Guinea Pigs
Rabbits
Calcium

ASJC Scopus subject areas

  • Gastroenterology

Cite this

Evidence for H+ secretion by the in vivo canine gallbladder. / Rege, Robert V; Moore, Edward W.

In: Gastroenterology, Vol. 92, No. 2, 1987, p. 281-289.

Research output: Contribution to journalArticle

Rege, Robert V ; Moore, Edward W. / Evidence for H+ secretion by the in vivo canine gallbladder. In: Gastroenterology. 1987 ; Vol. 92, No. 2. pp. 281-289.
@article{a84026f179b445b8a1e06a8ce60c4b91,
title = "Evidence for H+ secretion by the in vivo canine gallbladder",
abstract = "In humans and most other species, a decline in pH of gallbladder contents occurs during the concentration of bile. Recent in vitro studies in rabbit, guinea pig, and Necturus gallbladders have strongly suggested mucosal H+ secretion during sodium reabsorption, presumably representing a Na+ H+ exchange. The present in vivo studies are the first attempt to determine whether H+ secretion by the gallbladder can be demonstrated in the living animal. Gallbladder bile was obtained from 27 anesthetized dogs after 12-24-h fasts; 12 samples of common duct bile were also obtained in 3 dogs during variable taurocholate infusion. In common duct bile, observed ranges were as follows: pH, 7.3-7.85; CO2 partial pressure (Pco2), 21-32 mmHg; total CO2 concentration ([TCO2]), 16.4-41.4 mM; total bile salt concentration ([TBS]), 16-93 mM; and [Na], 153-192 mM. In gallbladder bile, respective ranges were as follows: pH, 5.72-7.29; Pco2, 36-101 mmHg; [TCO2], 1.21-15.5 mM; [TBS], 150-305 mM; and [Na], 199-266 mM. In all samples [Na] was linearly related to [TBS]. Carbon dioxide partial pressure increased from a mean of 27.3 mmHg in common duct bile to >100 mmHg in gallbladder bile at [TBS] = 180 mM, then declined to ~36 mmHg as [TBS] increased to >300 mM. Peak Pco2 occurred at pH ~6.4-6.6, then declined as pH decreased to ~5.7. Bile to plasma Pco2 ratios increased from a mean of 1.08 in common duct samples to >2.0 in gallbladder samples at pH ~6.3, then declined to ~1.0 in fully concentrated bile. If the high Pco2 values in bile were solely due to tissue CO2 production, a sustained increase in Pco2 throughout Na+ reabsorption might be expected. The results strongly suggest H+ secretion (HCO3 - neutralization), as peak Pco2 occurred when [TBS] was only about 180 mM, long before sodium absorption was complete. It is hypothesized that H+ secretion may have important favorable effects on calcium lithogenicity, reducing the likelihood of the formation of CaCO3 - containing gallstones.",
author = "Rege, {Robert V} and Moore, {Edward W.}",
year = "1987",
language = "English (US)",
volume = "92",
pages = "281--289",
journal = "Gastroenterology",
issn = "0016-5085",
publisher = "W.B. Saunders Ltd",
number = "2",

}

TY - JOUR

T1 - Evidence for H+ secretion by the in vivo canine gallbladder

AU - Rege, Robert V

AU - Moore, Edward W.

PY - 1987

Y1 - 1987

N2 - In humans and most other species, a decline in pH of gallbladder contents occurs during the concentration of bile. Recent in vitro studies in rabbit, guinea pig, and Necturus gallbladders have strongly suggested mucosal H+ secretion during sodium reabsorption, presumably representing a Na+ H+ exchange. The present in vivo studies are the first attempt to determine whether H+ secretion by the gallbladder can be demonstrated in the living animal. Gallbladder bile was obtained from 27 anesthetized dogs after 12-24-h fasts; 12 samples of common duct bile were also obtained in 3 dogs during variable taurocholate infusion. In common duct bile, observed ranges were as follows: pH, 7.3-7.85; CO2 partial pressure (Pco2), 21-32 mmHg; total CO2 concentration ([TCO2]), 16.4-41.4 mM; total bile salt concentration ([TBS]), 16-93 mM; and [Na], 153-192 mM. In gallbladder bile, respective ranges were as follows: pH, 5.72-7.29; Pco2, 36-101 mmHg; [TCO2], 1.21-15.5 mM; [TBS], 150-305 mM; and [Na], 199-266 mM. In all samples [Na] was linearly related to [TBS]. Carbon dioxide partial pressure increased from a mean of 27.3 mmHg in common duct bile to >100 mmHg in gallbladder bile at [TBS] = 180 mM, then declined to ~36 mmHg as [TBS] increased to >300 mM. Peak Pco2 occurred at pH ~6.4-6.6, then declined as pH decreased to ~5.7. Bile to plasma Pco2 ratios increased from a mean of 1.08 in common duct samples to >2.0 in gallbladder samples at pH ~6.3, then declined to ~1.0 in fully concentrated bile. If the high Pco2 values in bile were solely due to tissue CO2 production, a sustained increase in Pco2 throughout Na+ reabsorption might be expected. The results strongly suggest H+ secretion (HCO3 - neutralization), as peak Pco2 occurred when [TBS] was only about 180 mM, long before sodium absorption was complete. It is hypothesized that H+ secretion may have important favorable effects on calcium lithogenicity, reducing the likelihood of the formation of CaCO3 - containing gallstones.

AB - In humans and most other species, a decline in pH of gallbladder contents occurs during the concentration of bile. Recent in vitro studies in rabbit, guinea pig, and Necturus gallbladders have strongly suggested mucosal H+ secretion during sodium reabsorption, presumably representing a Na+ H+ exchange. The present in vivo studies are the first attempt to determine whether H+ secretion by the gallbladder can be demonstrated in the living animal. Gallbladder bile was obtained from 27 anesthetized dogs after 12-24-h fasts; 12 samples of common duct bile were also obtained in 3 dogs during variable taurocholate infusion. In common duct bile, observed ranges were as follows: pH, 7.3-7.85; CO2 partial pressure (Pco2), 21-32 mmHg; total CO2 concentration ([TCO2]), 16.4-41.4 mM; total bile salt concentration ([TBS]), 16-93 mM; and [Na], 153-192 mM. In gallbladder bile, respective ranges were as follows: pH, 5.72-7.29; Pco2, 36-101 mmHg; [TCO2], 1.21-15.5 mM; [TBS], 150-305 mM; and [Na], 199-266 mM. In all samples [Na] was linearly related to [TBS]. Carbon dioxide partial pressure increased from a mean of 27.3 mmHg in common duct bile to >100 mmHg in gallbladder bile at [TBS] = 180 mM, then declined to ~36 mmHg as [TBS] increased to >300 mM. Peak Pco2 occurred at pH ~6.4-6.6, then declined as pH decreased to ~5.7. Bile to plasma Pco2 ratios increased from a mean of 1.08 in common duct samples to >2.0 in gallbladder samples at pH ~6.3, then declined to ~1.0 in fully concentrated bile. If the high Pco2 values in bile were solely due to tissue CO2 production, a sustained increase in Pco2 throughout Na+ reabsorption might be expected. The results strongly suggest H+ secretion (HCO3 - neutralization), as peak Pco2 occurred when [TBS] was only about 180 mM, long before sodium absorption was complete. It is hypothesized that H+ secretion may have important favorable effects on calcium lithogenicity, reducing the likelihood of the formation of CaCO3 - containing gallstones.

UR - http://www.scopus.com/inward/record.url?scp=0023065344&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023065344&partnerID=8YFLogxK

M3 - Article

C2 - 3098620

AN - SCOPUS:0023065344

VL - 92

SP - 281

EP - 289

JO - Gastroenterology

JF - Gastroenterology

SN - 0016-5085

IS - 2

ER -