Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice

Shah R. Ali, Simon Hippenmeyer, Lily V. Saadat, Liqun Luo, Irving L. Weissman, Reza Ardehali

Research output: Contribution to journalArticlepeer-review

191 Scopus citations

Abstract

The mammalian heart has long been considered a postmitotic organ, implying that the total number of cardiomyocytes is set at birth. Analysis of cell division in the mammalian heart is complicated by cardiomyocyte binucleation shortly after birth, which makes it challenging to interpret traditional assays of cell turnover [Laflamme MA, Murray CE (2011) Nature 473(7347):326-335; Bergmann O, et al. (2009) Science 324(5923):98-102]. An elegant multi-isotope imaging-mass spectrometry technique recently calculated the low, discrete rate of cardiomyocyte generation in mice [Senyo SE, et al. (2013) Nature 493(7432):433-436], yet our cellular-level understanding of postnatal cardiomyogenesis remains limited. Herein, we provide a new line of evidence for the differentiated α-myosin heavy chain-expressing cardiomyocyte as the cell of origin of postnatal cardiomyogenesis using the "mosaic analysis with double markers" mouse model. We show limited, life-long, symmetric division of cardiomyocytes as a rare event that is evident in utero but significantly diminishes after the first month of life in mice; daughter cardiomyocytes divide very seldom, which this study is the first to demonstrate, to our knowledge. Furthermore, ligation of the left anterior descending coronary artery, which causes a myocardial infarction in the mosaic analysis with double-marker mice, did not increase the rate of cardiomyocyte division above the basal level for up to 4 wk after the injury. The clonal analysis described here provides direct evidence of postnatal mammalian cardiomyogenesis.

Original languageEnglish (US)
Pages (from-to)8850-8855
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume111
Issue number24
DOIs
StatePublished - 2014
Externally publishedYes

Keywords

  • Aging
  • Cardiovascular progenitors
  • Heart development
  • Regeneration

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice'. Together they form a unique fingerprint.

Cite this