Expression of G(sα) in Escherichia coli. Purification and properties of two forms of the protein

M. P. Graziano, M. Freissmuth, A. G. Gilman

Research output: Contribution to journalArticle

170 Citations (Scopus)

Abstract

Cloning of complementary DNAs that encode either of two forms of the α subunit of the guanine nucleotide-binding regulatory protein (G(s)) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M. P., Casey, P. J., and Gilman, A. G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of G(sα) (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13 · min-1 and 0.34 · min-1 at 20°C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant G(sα) have essentially the same k(cat) for GTP hydrolysis, ~ 4 · min-1. Recombinant G(sα) interacts functionally with G protein βγ subunits and with β-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of βγ subunits. Both forms of recombinant G(sα) can reconstitute GTP-, isoproterenol + GTP-, guanosine 5-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for G(s) purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant G(sα) for adenylyl cyclase is 5-10 times lower than that of liver G(s) under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that G(sα), when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.

Original languageEnglish (US)
Pages (from-to)409-418
Number of pages10
JournalJournal of Biological Chemistry
Volume264
Issue number1
StatePublished - 1989

Fingerprint

Adenylyl Cyclases
Escherichia coli
Purification
Guanosine Triphosphate
GTP-Binding Proteins
Guanosine 5'-O-(3-Thiotriphosphate)
Proteins
Liver
Cholera Toxin
Protein Subunits
Post Translational Protein Processing
Fluorides
Guanine Nucleotides
Isoproterenol
Recombinant Proteins
Cloning
Adenosine Diphosphate
Adrenergic Receptors
Organism Cloning
Carrier Proteins

ASJC Scopus subject areas

  • Biochemistry

Cite this

Expression of G(sα) in Escherichia coli. Purification and properties of two forms of the protein. / Graziano, M. P.; Freissmuth, M.; Gilman, A. G.

In: Journal of Biological Chemistry, Vol. 264, No. 1, 1989, p. 409-418.

Research output: Contribution to journalArticle

Graziano, M. P. ; Freissmuth, M. ; Gilman, A. G. / Expression of G(sα) in Escherichia coli. Purification and properties of two forms of the protein. In: Journal of Biological Chemistry. 1989 ; Vol. 264, No. 1. pp. 409-418.
@article{aca7692ffd9d4624a4a6413f77154bfa,
title = "Expression of G(sα) in Escherichia coli. Purification and properties of two forms of the protein",
abstract = "Cloning of complementary DNAs that encode either of two forms of the α subunit of the guanine nucleotide-binding regulatory protein (G(s)) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M. P., Casey, P. J., and Gilman, A. G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of G(sα) (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13 · min-1 and 0.34 · min-1 at 20°C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant G(sα) have essentially the same k(cat) for GTP hydrolysis, ~ 4 · min-1. Recombinant G(sα) interacts functionally with G protein βγ subunits and with β-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of βγ subunits. Both forms of recombinant G(sα) can reconstitute GTP-, isoproterenol + GTP-, guanosine 5-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for G(s) purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant G(sα) for adenylyl cyclase is 5-10 times lower than that of liver G(s) under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that G(sα), when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.",
author = "Graziano, {M. P.} and M. Freissmuth and Gilman, {A. G.}",
year = "1989",
language = "English (US)",
volume = "264",
pages = "409--418",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "1",

}

TY - JOUR

T1 - Expression of G(sα) in Escherichia coli. Purification and properties of two forms of the protein

AU - Graziano, M. P.

AU - Freissmuth, M.

AU - Gilman, A. G.

PY - 1989

Y1 - 1989

N2 - Cloning of complementary DNAs that encode either of two forms of the α subunit of the guanine nucleotide-binding regulatory protein (G(s)) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M. P., Casey, P. J., and Gilman, A. G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of G(sα) (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13 · min-1 and 0.34 · min-1 at 20°C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant G(sα) have essentially the same k(cat) for GTP hydrolysis, ~ 4 · min-1. Recombinant G(sα) interacts functionally with G protein βγ subunits and with β-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of βγ subunits. Both forms of recombinant G(sα) can reconstitute GTP-, isoproterenol + GTP-, guanosine 5-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for G(s) purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant G(sα) for adenylyl cyclase is 5-10 times lower than that of liver G(s) under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that G(sα), when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.

AB - Cloning of complementary DNAs that encode either of two forms of the α subunit of the guanine nucleotide-binding regulatory protein (G(s)) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M. P., Casey, P. J., and Gilman, A. G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of G(sα) (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13 · min-1 and 0.34 · min-1 at 20°C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant G(sα) have essentially the same k(cat) for GTP hydrolysis, ~ 4 · min-1. Recombinant G(sα) interacts functionally with G protein βγ subunits and with β-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of βγ subunits. Both forms of recombinant G(sα) can reconstitute GTP-, isoproterenol + GTP-, guanosine 5-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for G(s) purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant G(sα) for adenylyl cyclase is 5-10 times lower than that of liver G(s) under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that G(sα), when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.

UR - http://www.scopus.com/inward/record.url?scp=0024476804&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024476804&partnerID=8YFLogxK

M3 - Article

VL - 264

SP - 409

EP - 418

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 1

ER -