Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy

Bryan Murray, Kenneth Forster, Robert Timmerman

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates defined by the body frame fiducials. The ability to impose abdominal compression proved to be a simple way to reduce target and tissue motion. SBRT with Stereotactic Body Frame enables comfortable patient immobilization and facilitates repeated registering and re-registering of the patient to the frame. With the body frame, large-dose-per fraction treatment is possible for localized tumor deposits with the aim of attaining a more therapeutic result.

Original languageEnglish (US)
Pages (from-to)86-91
Number of pages6
JournalMedical Dosimetry
Volume32
Issue number2
DOIs
StatePublished - Jun 2007

Fingerprint

immobilization
Immobilization
radiation therapy
Radiotherapy
assurance
Therapeutics
planning
tumors
organs
delivery
Patient Positioning
Weights and Measures
Neoplasms
fluoroscopy
Fluoroscopy
bags
screws
beads
pretreatment
positioning

Keywords

  • Body frame
  • Immobilization
  • Radiosurgery
  • Stereotactic

ASJC Scopus subject areas

  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Health Professions(all)
  • Radiation

Cite this

Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy. / Murray, Bryan; Forster, Kenneth; Timmerman, Robert.

In: Medical Dosimetry, Vol. 32, No. 2, 06.2007, p. 86-91.

Research output: Contribution to journalArticle

@article{416b0b16d41048e4b4baf3b5ed5394c6,
title = "Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy",
abstract = "Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates defined by the body frame fiducials. The ability to impose abdominal compression proved to be a simple way to reduce target and tissue motion. SBRT with Stereotactic Body Frame enables comfortable patient immobilization and facilitates repeated registering and re-registering of the patient to the frame. With the body frame, large-dose-per fraction treatment is possible for localized tumor deposits with the aim of attaining a more therapeutic result.",
keywords = "Body frame, Immobilization, Radiosurgery, Stereotactic",
author = "Bryan Murray and Kenneth Forster and Robert Timmerman",
year = "2007",
month = "6",
doi = "10.1016/j.meddos.2007.01.005",
language = "English (US)",
volume = "32",
pages = "86--91",
journal = "Medical Dosimetry",
issn = "0958-3947",
publisher = "Elsevier Inc.",
number = "2",

}

TY - JOUR

T1 - Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy

AU - Murray, Bryan

AU - Forster, Kenneth

AU - Timmerman, Robert

PY - 2007/6

Y1 - 2007/6

N2 - Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates defined by the body frame fiducials. The ability to impose abdominal compression proved to be a simple way to reduce target and tissue motion. SBRT with Stereotactic Body Frame enables comfortable patient immobilization and facilitates repeated registering and re-registering of the patient to the frame. With the body frame, large-dose-per fraction treatment is possible for localized tumor deposits with the aim of attaining a more therapeutic result.

AB - Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates defined by the body frame fiducials. The ability to impose abdominal compression proved to be a simple way to reduce target and tissue motion. SBRT with Stereotactic Body Frame enables comfortable patient immobilization and facilitates repeated registering and re-registering of the patient to the frame. With the body frame, large-dose-per fraction treatment is possible for localized tumor deposits with the aim of attaining a more therapeutic result.

KW - Body frame

KW - Immobilization

KW - Radiosurgery

KW - Stereotactic

UR - http://www.scopus.com/inward/record.url?scp=34247513428&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247513428&partnerID=8YFLogxK

U2 - 10.1016/j.meddos.2007.01.005

DO - 10.1016/j.meddos.2007.01.005

M3 - Article

C2 - 17472887

AN - SCOPUS:34247513428

VL - 32

SP - 86

EP - 91

JO - Medical Dosimetry

JF - Medical Dosimetry

SN - 0958-3947

IS - 2

ER -