Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders

findings from the B-SNIP study

R. Lencer, L. J. Mills, N. Alliey-Rodriguez, R. Shafee, A. M. Lee, J. L. Reilly, A. Sprenger, J. E. McDowell, S. A. McCarroll, M. S. Keshavan, G. D. Pearlson, C. A. Tamminga, B. A. Clementz, E. S. Gershon, J. A. Sweeney, J. R. Bishop

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Eye movement deviations, particularly deficits of initial sensorimotor processing and sustained pursuit maintenance, and antisaccade inhibition errors, are established intermediate phenotypes for psychotic disorders. We here studied eye movement measures of 849 participants from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study (schizophrenia N=230, schizoaffective disorder N=155, psychotic bipolar disorder N=206 and healthy controls N=258) as quantitative phenotypes in relation to genetic data, while controlling for genetically derived ancestry measures, age and sex. A mixed-modeling genome-wide association studies approach was used including ~4.4 million genotypes (PsychChip and 1000 Genomes imputation). Across participants, sensorimotor processing at pursuit initiation was significantly associated with a single nucleotide polymorphism in IPO8 (12p11.21, P=8 × 10-11), whereas suggestive associations with sustained pursuit maintenance were identified with SNPs in SH3GL2 (9p22.2, P=3 × 10-8). In participants of predominantly African ancestry, sensorimotor processing was also significantly associated with SNPs in PCDH12 (5q31.3, P=1.6 × 10-10), and suggestive associations were observed with NRSN1 (6p22.3, P=5.4 × 10-8) and LMO7 (13q22.2, P=7.3x10-8), whereas antisaccade error rate was significantly associated with a non-coding region at chromosome 7 (P=6.5 × 10-9). Exploratory pathway analyses revealed associations with nervous system development and function for 40 top genes with sensorimotor processing and pursuit maintenance (P=4.9 × 10-2-9.8 × 10-4). Our findings suggest novel patterns of genetic variation relevant for brain systems subserving eye movement control known to be impaired in psychotic disorders. They include genes involved in nuclear trafficking and gene silencing (IPO8), fast axonal guidance and synaptic specificity (PCDH12), transduction of nerve signals (NRSN1), retinal degeneration (LMO7), synaptic glutamate release (SH3GL2), and broader nervous system development and function.

Original languageEnglish (US)
Pages (from-to)e1249
JournalTranslational Psychiatry
Volume7
Issue number10
DOIs
StatePublished - Oct 24 2017

Fingerprint

Smooth Pursuit
Genome-Wide Association Study
Eye Movements
Psychotic Disorders
Schizophrenia
Single Nucleotide Polymorphism
Phenotype
Maintenance
Nervous System
Retinal Degeneration
Chromosomes, Human, Pair 7
Gene Silencing
Bipolar Disorder
Genes
Glutamic Acid
Signal Transduction
Genotype
Genome
Brain

ASJC Scopus subject areas

  • Psychiatry and Mental health
  • Cellular and Molecular Neuroscience
  • Biological Psychiatry

Cite this

Lencer, R., Mills, L. J., Alliey-Rodriguez, N., Shafee, R., Lee, A. M., Reilly, J. L., ... Bishop, J. R. (2017). Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders: findings from the B-SNIP study. Translational Psychiatry, 7(10), e1249. https://doi.org/10.1038/tp.2017.210

Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders : findings from the B-SNIP study. / Lencer, R.; Mills, L. J.; Alliey-Rodriguez, N.; Shafee, R.; Lee, A. M.; Reilly, J. L.; Sprenger, A.; McDowell, J. E.; McCarroll, S. A.; Keshavan, M. S.; Pearlson, G. D.; Tamminga, C. A.; Clementz, B. A.; Gershon, E. S.; Sweeney, J. A.; Bishop, J. R.

In: Translational Psychiatry, Vol. 7, No. 10, 24.10.2017, p. e1249.

Research output: Contribution to journalArticle

Lencer, R, Mills, LJ, Alliey-Rodriguez, N, Shafee, R, Lee, AM, Reilly, JL, Sprenger, A, McDowell, JE, McCarroll, SA, Keshavan, MS, Pearlson, GD, Tamminga, CA, Clementz, BA, Gershon, ES, Sweeney, JA & Bishop, JR 2017, 'Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders: findings from the B-SNIP study', Translational Psychiatry, vol. 7, no. 10, pp. e1249. https://doi.org/10.1038/tp.2017.210
Lencer, R. ; Mills, L. J. ; Alliey-Rodriguez, N. ; Shafee, R. ; Lee, A. M. ; Reilly, J. L. ; Sprenger, A. ; McDowell, J. E. ; McCarroll, S. A. ; Keshavan, M. S. ; Pearlson, G. D. ; Tamminga, C. A. ; Clementz, B. A. ; Gershon, E. S. ; Sweeney, J. A. ; Bishop, J. R. / Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders : findings from the B-SNIP study. In: Translational Psychiatry. 2017 ; Vol. 7, No. 10. pp. e1249.
@article{800ed08708664c7db0533021aeafee98,
title = "Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders: findings from the B-SNIP study",
abstract = "Eye movement deviations, particularly deficits of initial sensorimotor processing and sustained pursuit maintenance, and antisaccade inhibition errors, are established intermediate phenotypes for psychotic disorders. We here studied eye movement measures of 849 participants from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study (schizophrenia N=230, schizoaffective disorder N=155, psychotic bipolar disorder N=206 and healthy controls N=258) as quantitative phenotypes in relation to genetic data, while controlling for genetically derived ancestry measures, age and sex. A mixed-modeling genome-wide association studies approach was used including ~4.4 million genotypes (PsychChip and 1000 Genomes imputation). Across participants, sensorimotor processing at pursuit initiation was significantly associated with a single nucleotide polymorphism in IPO8 (12p11.21, P=8 × 10-11), whereas suggestive associations with sustained pursuit maintenance were identified with SNPs in SH3GL2 (9p22.2, P=3 × 10-8). In participants of predominantly African ancestry, sensorimotor processing was also significantly associated with SNPs in PCDH12 (5q31.3, P=1.6 × 10-10), and suggestive associations were observed with NRSN1 (6p22.3, P=5.4 × 10-8) and LMO7 (13q22.2, P=7.3x10-8), whereas antisaccade error rate was significantly associated with a non-coding region at chromosome 7 (P=6.5 × 10-9). Exploratory pathway analyses revealed associations with nervous system development and function for 40 top genes with sensorimotor processing and pursuit maintenance (P=4.9 × 10-2-9.8 × 10-4). Our findings suggest novel patterns of genetic variation relevant for brain systems subserving eye movement control known to be impaired in psychotic disorders. They include genes involved in nuclear trafficking and gene silencing (IPO8), fast axonal guidance and synaptic specificity (PCDH12), transduction of nerve signals (NRSN1), retinal degeneration (LMO7), synaptic glutamate release (SH3GL2), and broader nervous system development and function.",
author = "R. Lencer and Mills, {L. J.} and N. Alliey-Rodriguez and R. Shafee and Lee, {A. M.} and Reilly, {J. L.} and A. Sprenger and McDowell, {J. E.} and McCarroll, {S. A.} and Keshavan, {M. S.} and Pearlson, {G. D.} and Tamminga, {C. A.} and Clementz, {B. A.} and Gershon, {E. S.} and Sweeney, {J. A.} and Bishop, {J. R.}",
year = "2017",
month = "10",
day = "24",
doi = "10.1038/tp.2017.210",
language = "English (US)",
volume = "7",
pages = "e1249",
journal = "Translational Psychiatry",
issn = "2158-3188",
publisher = "Nature Publishing Group",
number = "10",

}

TY - JOUR

T1 - Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders

T2 - findings from the B-SNIP study

AU - Lencer, R.

AU - Mills, L. J.

AU - Alliey-Rodriguez, N.

AU - Shafee, R.

AU - Lee, A. M.

AU - Reilly, J. L.

AU - Sprenger, A.

AU - McDowell, J. E.

AU - McCarroll, S. A.

AU - Keshavan, M. S.

AU - Pearlson, G. D.

AU - Tamminga, C. A.

AU - Clementz, B. A.

AU - Gershon, E. S.

AU - Sweeney, J. A.

AU - Bishop, J. R.

PY - 2017/10/24

Y1 - 2017/10/24

N2 - Eye movement deviations, particularly deficits of initial sensorimotor processing and sustained pursuit maintenance, and antisaccade inhibition errors, are established intermediate phenotypes for psychotic disorders. We here studied eye movement measures of 849 participants from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study (schizophrenia N=230, schizoaffective disorder N=155, psychotic bipolar disorder N=206 and healthy controls N=258) as quantitative phenotypes in relation to genetic data, while controlling for genetically derived ancestry measures, age and sex. A mixed-modeling genome-wide association studies approach was used including ~4.4 million genotypes (PsychChip and 1000 Genomes imputation). Across participants, sensorimotor processing at pursuit initiation was significantly associated with a single nucleotide polymorphism in IPO8 (12p11.21, P=8 × 10-11), whereas suggestive associations with sustained pursuit maintenance were identified with SNPs in SH3GL2 (9p22.2, P=3 × 10-8). In participants of predominantly African ancestry, sensorimotor processing was also significantly associated with SNPs in PCDH12 (5q31.3, P=1.6 × 10-10), and suggestive associations were observed with NRSN1 (6p22.3, P=5.4 × 10-8) and LMO7 (13q22.2, P=7.3x10-8), whereas antisaccade error rate was significantly associated with a non-coding region at chromosome 7 (P=6.5 × 10-9). Exploratory pathway analyses revealed associations with nervous system development and function for 40 top genes with sensorimotor processing and pursuit maintenance (P=4.9 × 10-2-9.8 × 10-4). Our findings suggest novel patterns of genetic variation relevant for brain systems subserving eye movement control known to be impaired in psychotic disorders. They include genes involved in nuclear trafficking and gene silencing (IPO8), fast axonal guidance and synaptic specificity (PCDH12), transduction of nerve signals (NRSN1), retinal degeneration (LMO7), synaptic glutamate release (SH3GL2), and broader nervous system development and function.

AB - Eye movement deviations, particularly deficits of initial sensorimotor processing and sustained pursuit maintenance, and antisaccade inhibition errors, are established intermediate phenotypes for psychotic disorders. We here studied eye movement measures of 849 participants from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study (schizophrenia N=230, schizoaffective disorder N=155, psychotic bipolar disorder N=206 and healthy controls N=258) as quantitative phenotypes in relation to genetic data, while controlling for genetically derived ancestry measures, age and sex. A mixed-modeling genome-wide association studies approach was used including ~4.4 million genotypes (PsychChip and 1000 Genomes imputation). Across participants, sensorimotor processing at pursuit initiation was significantly associated with a single nucleotide polymorphism in IPO8 (12p11.21, P=8 × 10-11), whereas suggestive associations with sustained pursuit maintenance were identified with SNPs in SH3GL2 (9p22.2, P=3 × 10-8). In participants of predominantly African ancestry, sensorimotor processing was also significantly associated with SNPs in PCDH12 (5q31.3, P=1.6 × 10-10), and suggestive associations were observed with NRSN1 (6p22.3, P=5.4 × 10-8) and LMO7 (13q22.2, P=7.3x10-8), whereas antisaccade error rate was significantly associated with a non-coding region at chromosome 7 (P=6.5 × 10-9). Exploratory pathway analyses revealed associations with nervous system development and function for 40 top genes with sensorimotor processing and pursuit maintenance (P=4.9 × 10-2-9.8 × 10-4). Our findings suggest novel patterns of genetic variation relevant for brain systems subserving eye movement control known to be impaired in psychotic disorders. They include genes involved in nuclear trafficking and gene silencing (IPO8), fast axonal guidance and synaptic specificity (PCDH12), transduction of nerve signals (NRSN1), retinal degeneration (LMO7), synaptic glutamate release (SH3GL2), and broader nervous system development and function.

UR - http://www.scopus.com/inward/record.url?scp=85048999885&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048999885&partnerID=8YFLogxK

U2 - 10.1038/tp.2017.210

DO - 10.1038/tp.2017.210

M3 - Article

VL - 7

SP - e1249

JO - Translational Psychiatry

JF - Translational Psychiatry

SN - 2158-3188

IS - 10

ER -