Abstract

IMPORTANCE To provide a comprehensive review of knowledge of the genomics of Alzheimer disease (AD) and DNA amyloid β 42 (Aβ42) vaccination as a potential therapy. OBSERVATIONS Genotype-phenotype correlations of AD are presented to provide a comprehensive appreciation of the spectrum of disease causation. Alzheimer disease is caused in part by the overproduction and lack of clearance of Aβ protein. Oligomer Aβ, the most toxic species of Aβ, causes direct injury to neurons, accompanied by enhanced neuroinflammation, astrocytosis and gliosis, and eventually neuronal loss. The strongest genetic evidence supporting this hypothesis derives from mutations in the amyloid precursor protein (APP) gene. A detrimental APP mutation at the β-secretase cleavage site linked to early-onset AD found in a Swedish pedigree enhances Aβ production, in contrast to a beneficial mutation 2 residues away in APP that reduces Aβ production and protects against the onset of sporadic AD. A number of common variants associated with late-onset AD have been identified including apolipoprotein E, BIN1, ABC7, PICALM, MS4A4E/MS4A6A, CD2Ap, CD33, EPHA1, CLU, CR1, and SORL1. One or 2 copies of the apolipoprotein E å4 allele are a major risk factor for late-onset AD. With DNA Aβ42 vaccination, a Th2-type noninflammatory immune response was achieved with a downregulation of Aβ42-specific effector (Th1, Th17, and Th2) cell responses at later immunization times. DNA Aβ42 vaccination upregulated T regulator cells (CD4+, CD25+, and FoxP3+) and its cytokine interleukin 10, resulting in downregulation of T effectors. CONCLUSIONS AND RELEVANCE Mutations in APP and PS-1 and PS-2 genes that are associated with early-onset, autosomal, dominantly inherited AD, in addition to the at-risk gene polymorphisms responsible for late-onset AD, all indicate a direct and early role of Aβ in the pathogenesis of AD. A translational result of genomic research has been Aβ-reducing therapies including DNA Aβ42 vaccination as a promising approach to delay or prevent this disease.

Original languageEnglish (US)
Pages (from-to)867-874
Number of pages8
JournalJAMA Neurology
Volume73
Issue number7
DOIs
StatePublished - Jul 1 2016

Fingerprint

Genomics
Alzheimer Disease
Amyloid
Amyloid beta-Protein Precursor
Vaccination
Mutation
Gliosis
DNA
Down-Regulation
Genes
Apolipoprotein E4
Serum Amyloid A Protein
Th17 Cells
Amyloid Precursor Protein Secretases
Th2 Cells
Poisons
Genetic Association Studies
Apolipoproteins E
Pedigree
Causality

ASJC Scopus subject areas

  • Clinical Neurology

Cite this

Genomics of Alzheimer disease : A review. / Rosenberg, Roger N.; Lambracht-Washington, Doris; Yu, Gang; Xia, Weiming.

In: JAMA Neurology, Vol. 73, No. 7, 01.07.2016, p. 867-874.

Research output: Contribution to journalReview article

@article{58dfe020f183435aa7e35bbf02649139,
title = "Genomics of Alzheimer disease: A review",
abstract = "IMPORTANCE To provide a comprehensive review of knowledge of the genomics of Alzheimer disease (AD) and DNA amyloid β 42 (Aβ42) vaccination as a potential therapy. OBSERVATIONS Genotype-phenotype correlations of AD are presented to provide a comprehensive appreciation of the spectrum of disease causation. Alzheimer disease is caused in part by the overproduction and lack of clearance of Aβ protein. Oligomer Aβ, the most toxic species of Aβ, causes direct injury to neurons, accompanied by enhanced neuroinflammation, astrocytosis and gliosis, and eventually neuronal loss. The strongest genetic evidence supporting this hypothesis derives from mutations in the amyloid precursor protein (APP) gene. A detrimental APP mutation at the β-secretase cleavage site linked to early-onset AD found in a Swedish pedigree enhances Aβ production, in contrast to a beneficial mutation 2 residues away in APP that reduces Aβ production and protects against the onset of sporadic AD. A number of common variants associated with late-onset AD have been identified including apolipoprotein E, BIN1, ABC7, PICALM, MS4A4E/MS4A6A, CD2Ap, CD33, EPHA1, CLU, CR1, and SORL1. One or 2 copies of the apolipoprotein E {\aa}4 allele are a major risk factor for late-onset AD. With DNA Aβ42 vaccination, a Th2-type noninflammatory immune response was achieved with a downregulation of Aβ42-specific effector (Th1, Th17, and Th2) cell responses at later immunization times. DNA Aβ42 vaccination upregulated T regulator cells (CD4+, CD25+, and FoxP3+) and its cytokine interleukin 10, resulting in downregulation of T effectors. CONCLUSIONS AND RELEVANCE Mutations in APP and PS-1 and PS-2 genes that are associated with early-onset, autosomal, dominantly inherited AD, in addition to the at-risk gene polymorphisms responsible for late-onset AD, all indicate a direct and early role of Aβ in the pathogenesis of AD. A translational result of genomic research has been Aβ-reducing therapies including DNA Aβ42 vaccination as a promising approach to delay or prevent this disease.",
author = "Rosenberg, {Roger N.} and Doris Lambracht-Washington and Gang Yu and Weiming Xia",
year = "2016",
month = "7",
day = "1",
doi = "10.1001/jamaneurol.2016.0301",
language = "English (US)",
volume = "73",
pages = "867--874",
journal = "JAMA Neurology",
issn = "2168-6149",
publisher = "American Medical Association",
number = "7",

}

TY - JOUR

T1 - Genomics of Alzheimer disease

T2 - A review

AU - Rosenberg, Roger N.

AU - Lambracht-Washington, Doris

AU - Yu, Gang

AU - Xia, Weiming

PY - 2016/7/1

Y1 - 2016/7/1

N2 - IMPORTANCE To provide a comprehensive review of knowledge of the genomics of Alzheimer disease (AD) and DNA amyloid β 42 (Aβ42) vaccination as a potential therapy. OBSERVATIONS Genotype-phenotype correlations of AD are presented to provide a comprehensive appreciation of the spectrum of disease causation. Alzheimer disease is caused in part by the overproduction and lack of clearance of Aβ protein. Oligomer Aβ, the most toxic species of Aβ, causes direct injury to neurons, accompanied by enhanced neuroinflammation, astrocytosis and gliosis, and eventually neuronal loss. The strongest genetic evidence supporting this hypothesis derives from mutations in the amyloid precursor protein (APP) gene. A detrimental APP mutation at the β-secretase cleavage site linked to early-onset AD found in a Swedish pedigree enhances Aβ production, in contrast to a beneficial mutation 2 residues away in APP that reduces Aβ production and protects against the onset of sporadic AD. A number of common variants associated with late-onset AD have been identified including apolipoprotein E, BIN1, ABC7, PICALM, MS4A4E/MS4A6A, CD2Ap, CD33, EPHA1, CLU, CR1, and SORL1. One or 2 copies of the apolipoprotein E å4 allele are a major risk factor for late-onset AD. With DNA Aβ42 vaccination, a Th2-type noninflammatory immune response was achieved with a downregulation of Aβ42-specific effector (Th1, Th17, and Th2) cell responses at later immunization times. DNA Aβ42 vaccination upregulated T regulator cells (CD4+, CD25+, and FoxP3+) and its cytokine interleukin 10, resulting in downregulation of T effectors. CONCLUSIONS AND RELEVANCE Mutations in APP and PS-1 and PS-2 genes that are associated with early-onset, autosomal, dominantly inherited AD, in addition to the at-risk gene polymorphisms responsible for late-onset AD, all indicate a direct and early role of Aβ in the pathogenesis of AD. A translational result of genomic research has been Aβ-reducing therapies including DNA Aβ42 vaccination as a promising approach to delay or prevent this disease.

AB - IMPORTANCE To provide a comprehensive review of knowledge of the genomics of Alzheimer disease (AD) and DNA amyloid β 42 (Aβ42) vaccination as a potential therapy. OBSERVATIONS Genotype-phenotype correlations of AD are presented to provide a comprehensive appreciation of the spectrum of disease causation. Alzheimer disease is caused in part by the overproduction and lack of clearance of Aβ protein. Oligomer Aβ, the most toxic species of Aβ, causes direct injury to neurons, accompanied by enhanced neuroinflammation, astrocytosis and gliosis, and eventually neuronal loss. The strongest genetic evidence supporting this hypothesis derives from mutations in the amyloid precursor protein (APP) gene. A detrimental APP mutation at the β-secretase cleavage site linked to early-onset AD found in a Swedish pedigree enhances Aβ production, in contrast to a beneficial mutation 2 residues away in APP that reduces Aβ production and protects against the onset of sporadic AD. A number of common variants associated with late-onset AD have been identified including apolipoprotein E, BIN1, ABC7, PICALM, MS4A4E/MS4A6A, CD2Ap, CD33, EPHA1, CLU, CR1, and SORL1. One or 2 copies of the apolipoprotein E å4 allele are a major risk factor for late-onset AD. With DNA Aβ42 vaccination, a Th2-type noninflammatory immune response was achieved with a downregulation of Aβ42-specific effector (Th1, Th17, and Th2) cell responses at later immunization times. DNA Aβ42 vaccination upregulated T regulator cells (CD4+, CD25+, and FoxP3+) and its cytokine interleukin 10, resulting in downregulation of T effectors. CONCLUSIONS AND RELEVANCE Mutations in APP and PS-1 and PS-2 genes that are associated with early-onset, autosomal, dominantly inherited AD, in addition to the at-risk gene polymorphisms responsible for late-onset AD, all indicate a direct and early role of Aβ in the pathogenesis of AD. A translational result of genomic research has been Aβ-reducing therapies including DNA Aβ42 vaccination as a promising approach to delay or prevent this disease.

UR - http://www.scopus.com/inward/record.url?scp=84978114167&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84978114167&partnerID=8YFLogxK

U2 - 10.1001/jamaneurol.2016.0301

DO - 10.1001/jamaneurol.2016.0301

M3 - Review article

VL - 73

SP - 867

EP - 874

JO - JAMA Neurology

JF - JAMA Neurology

SN - 2168-6149

IS - 7

ER -