Gradient-based magnetic resonance electrical properties imaging of brain tissues

Jiaen Liu, Xiaotong Zhang, Sebastian Schmitter, Pierre Francois Van De Moortele, Bin He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Electrical properties tomography (EPT) holds promise for noninvasively mapping at high spatial resolution the electrical conductivity and permittivity of biological tissues in vivo using a magnetic resonance imaging (MRI) scanner. In the present study, we have developed a novel gradient-based EPT approach with greatly improved tissue boundary reconstruction and largely elevated robustness against measurement noise compared to existing techniques. Using a 7 Tesla MRI system, we report, for the first time, high-quality in vivo human brain electrical property images with refined structural details, which can potentially merit clinical diagnosis (such as cancer detection) and high-field MRI applications (quantification of local specific absorption rate) in the future.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6056-6059
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Externally publishedYes
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Gradient-based magnetic resonance electrical properties imaging of brain tissues'. Together they form a unique fingerprint.

Cite this