Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast

Courtney R. Johnson, Marc G. Steingesser, Andrew D. Weems, Anum Khan, Amy Gladfelter, Aurélie Bertin, Michael A. McMurray

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In Saccharomyces cerevisiae, five septins comprise two species of hetero-octamers, Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1– Cdc12–Cdc3–Cdc3–Cdc12–Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium occupies the site of a “missing” Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.

Original languageEnglish (US)
Article numbere54355
JournaleLife
Volume9
DOIs
StatePublished - Jan 2020
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint

Dive into the research topics of 'Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast'. Together they form a unique fingerprint.

Cite this