Hepatic Arterial Infusion of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles Selectively Disrupts Redox Balance in Hepatoma Cells and Reduces Growth of Orthotopic Liver Tumors in Rats

Xiaodong Wen, Lacy Reynolds, Rohit S. Mulik, Soo Young Kim, Tim Van Treuren, Liem H. Nguyen, Hao Zhu, Ian R. Corbin

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Background & Aims Dietary intake of the natural omega-3 fatty acid docosahexaenoic acid (DHA) has been implicated in protecting patients with viral hepatitis B or C from developing hepatocellular carcinoma (HCC). Little is known about the effects of DHA on established solid tumors. Here we describe a low-density lipoprotein-based nanoparticle that acts as a transporter for unesterified DHA (LDL-DHA) and demonstrates selective cytotoxicity toward HCC cells. We investigated the ability of LDL-DHA to reduce growth of orthotopic hepatomas in rats. Methods AxC-Irish (ACI) rats were given intrahepatic injections of rat hepatoma cells (H4IIE); 24 tumor-bearing rats (mean tumor diameter, ∼1 cm) were subject to a single hepatic artery injection of LDL nanoparticles (2 mg/kg) loaded with DHA (LDL-DHA), triolein (LDL-TO), or sham surgery controls. Tumor growth was measured by magnetic resonance imaging and other methods; tumor, liver, and serum samples were collected and assessed by histochemical, immunofluorescence, biochemical, and immunoblot analyses. Results Three days after administration of LDL-TO or sham surgery, the control rats had large, highly vascularized tumors that contained proliferating cells. However, rats given LDL-DHA had smaller, pale tumors that were devoid of vascular supply and >80% of the tumor tissue was necrotic. Four to 6 days after injection of LDL-DHA, the tumors were 3-fold smaller than those of control rats. The liver tissue that surrounded the tumors showed no histologic or biochemical evidence of injury. Injection of LDL-DHA into the hepatic artery of rats selectively deregulated redox reactions in tumor tissues by increasing levels of reactive oxygen species and lipid peroxidation, depleting and oxidizing glutathione and nicotinamide adenine dinucleotide phosphate, and significantly down-regulating the antioxidant enzyme glutathione peroxidase-4. Remarkably, the redox balance in the surrounding liver was not disrupted. Conclusion LDL-DHA nanoparticle selectively kills hepatoma cells and reduces growth of orthotopic liver tumors in rats. It induces tumor-specific necrosis by selectively disrupting redox balance within the cancer cell.

Original languageEnglish (US)
Pages (from-to)488-498
Number of pages11
JournalGastroenterology
Volume150
Issue number2
DOIs
StatePublished - Feb 1 2016

Keywords

  • Lipid Peroxidation
  • Liver Cancer
  • Nanomedicine
  • Omega-3 Fatty Acids

ASJC Scopus subject areas

  • Hepatology
  • Gastroenterology

Fingerprint

Dive into the research topics of 'Hepatic Arterial Infusion of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles Selectively Disrupts Redox Balance in Hepatoma Cells and Reduces Growth of Orthotopic Liver Tumors in Rats'. Together they form a unique fingerprint.

Cite this