HITS-CLIP Analysis Uncovers a Link between the Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Protein and Host Pre-mRNA Metabolism

Emi Sei, Tao Wang, Olga V. Hunter, Yang Xie, Nicholas K. Conrad

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

The Kaposi’s sarcoma associated herpesvirus (KSHV) is an oncogenic virus that causes Kaposi’s sarcoma, primary effusion lymphoma (PEL), and some forms of multicentric Castleman’s disease. The KSHV ORF57 protein is a conserved posttranscriptional regulator of gene expression that is essential for virus replication. ORF57 is multifunctional, but most of its activities are directly linked to its ability to bind RNA. We globally identified virus and host RNAs bound by ORF57 during lytic reactivation in PEL cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). As expected, ORF57-bound RNA fragments mapped throughout the KSHV genome, including the known ORF57 ligand PAN RNA. In agreement with previously published ChIP results, we observed that ORF57 bound RNAs near the oriLyt regions of the genome. Examination of the host RNA fragments revealed that a subset of the ORF57-bound RNAs was derived from transcript 5´ ends. The position of these 5´-bound fragments correlated closely with the 5´-most exon-intron junction of the pre-mRNA. We selected four candidates (BTG1, EGR1, ZFP36, and TNFSF9) and analyzed their pre-mRNA and mRNA levels during lytic phase. Analysis of both steady-state and newly made RNAs revealed that these candidate ORF57-bound pre-mRNAs persisted for longer periods of time throughout infection than control RNAs, consistent with a role for ORF57 in pre-mRNA metabolism. In addition, exogenous expression of ORF57 was sufficient to increase the pre-mRNA levels and, in one case, the mRNA levels of the putative ORF57 targets. These results demonstrate that ORF57 interacts with specific host pre-mRNAs during lytic reactivation and alters their processing, likely by stabilizing pre-mRNAs. These data suggest that ORF57 is involved in modulating host gene expression in addition to KSHV gene expression during lytic reactivation.

Original languageEnglish (US)
Article numbere1004652
JournalPLoS Pathogens
Volume11
Issue number2
DOIs
StatePublished - 2015

Fingerprint

High-Throughput Nucleotide Sequencing
Human Herpesvirus 8
RNA Precursors
Immunoprecipitation
RNA
Proteins
Primary Effusion Lymphoma
Gene Expression
Genome
Oncogenic Viruses
Messenger RNA
Kaposi's Sarcoma
RNA Viruses
Regulator Genes
Infection Control
Virus Replication
Introns
Exons
Ligands

ASJC Scopus subject areas

  • Microbiology
  • Parasitology
  • Virology
  • Immunology
  • Genetics
  • Molecular Biology

Cite this

@article{d22a60944ed34219a6cfc14ff72a2478,
title = "HITS-CLIP Analysis Uncovers a Link between the Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Protein and Host Pre-mRNA Metabolism",
abstract = "The Kaposi’s sarcoma associated herpesvirus (KSHV) is an oncogenic virus that causes Kaposi’s sarcoma, primary effusion lymphoma (PEL), and some forms of multicentric Castleman’s disease. The KSHV ORF57 protein is a conserved posttranscriptional regulator of gene expression that is essential for virus replication. ORF57 is multifunctional, but most of its activities are directly linked to its ability to bind RNA. We globally identified virus and host RNAs bound by ORF57 during lytic reactivation in PEL cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). As expected, ORF57-bound RNA fragments mapped throughout the KSHV genome, including the known ORF57 ligand PAN RNA. In agreement with previously published ChIP results, we observed that ORF57 bound RNAs near the oriLyt regions of the genome. Examination of the host RNA fragments revealed that a subset of the ORF57-bound RNAs was derived from transcript 5´ ends. The position of these 5´-bound fragments correlated closely with the 5´-most exon-intron junction of the pre-mRNA. We selected four candidates (BTG1, EGR1, ZFP36, and TNFSF9) and analyzed their pre-mRNA and mRNA levels during lytic phase. Analysis of both steady-state and newly made RNAs revealed that these candidate ORF57-bound pre-mRNAs persisted for longer periods of time throughout infection than control RNAs, consistent with a role for ORF57 in pre-mRNA metabolism. In addition, exogenous expression of ORF57 was sufficient to increase the pre-mRNA levels and, in one case, the mRNA levels of the putative ORF57 targets. These results demonstrate that ORF57 interacts with specific host pre-mRNAs during lytic reactivation and alters their processing, likely by stabilizing pre-mRNAs. These data suggest that ORF57 is involved in modulating host gene expression in addition to KSHV gene expression during lytic reactivation.",
author = "Emi Sei and Tao Wang and Hunter, {Olga V.} and Yang Xie and Conrad, {Nicholas K.}",
year = "2015",
doi = "10.1371/journal.ppat.1004652",
language = "English (US)",
volume = "11",
journal = "PLoS Pathogens",
issn = "1553-7366",
publisher = "Public Library of Science",
number = "2",

}

TY - JOUR

T1 - HITS-CLIP Analysis Uncovers a Link between the Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Protein and Host Pre-mRNA Metabolism

AU - Sei, Emi

AU - Wang, Tao

AU - Hunter, Olga V.

AU - Xie, Yang

AU - Conrad, Nicholas K.

PY - 2015

Y1 - 2015

N2 - The Kaposi’s sarcoma associated herpesvirus (KSHV) is an oncogenic virus that causes Kaposi’s sarcoma, primary effusion lymphoma (PEL), and some forms of multicentric Castleman’s disease. The KSHV ORF57 protein is a conserved posttranscriptional regulator of gene expression that is essential for virus replication. ORF57 is multifunctional, but most of its activities are directly linked to its ability to bind RNA. We globally identified virus and host RNAs bound by ORF57 during lytic reactivation in PEL cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). As expected, ORF57-bound RNA fragments mapped throughout the KSHV genome, including the known ORF57 ligand PAN RNA. In agreement with previously published ChIP results, we observed that ORF57 bound RNAs near the oriLyt regions of the genome. Examination of the host RNA fragments revealed that a subset of the ORF57-bound RNAs was derived from transcript 5´ ends. The position of these 5´-bound fragments correlated closely with the 5´-most exon-intron junction of the pre-mRNA. We selected four candidates (BTG1, EGR1, ZFP36, and TNFSF9) and analyzed their pre-mRNA and mRNA levels during lytic phase. Analysis of both steady-state and newly made RNAs revealed that these candidate ORF57-bound pre-mRNAs persisted for longer periods of time throughout infection than control RNAs, consistent with a role for ORF57 in pre-mRNA metabolism. In addition, exogenous expression of ORF57 was sufficient to increase the pre-mRNA levels and, in one case, the mRNA levels of the putative ORF57 targets. These results demonstrate that ORF57 interacts with specific host pre-mRNAs during lytic reactivation and alters their processing, likely by stabilizing pre-mRNAs. These data suggest that ORF57 is involved in modulating host gene expression in addition to KSHV gene expression during lytic reactivation.

AB - The Kaposi’s sarcoma associated herpesvirus (KSHV) is an oncogenic virus that causes Kaposi’s sarcoma, primary effusion lymphoma (PEL), and some forms of multicentric Castleman’s disease. The KSHV ORF57 protein is a conserved posttranscriptional regulator of gene expression that is essential for virus replication. ORF57 is multifunctional, but most of its activities are directly linked to its ability to bind RNA. We globally identified virus and host RNAs bound by ORF57 during lytic reactivation in PEL cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). As expected, ORF57-bound RNA fragments mapped throughout the KSHV genome, including the known ORF57 ligand PAN RNA. In agreement with previously published ChIP results, we observed that ORF57 bound RNAs near the oriLyt regions of the genome. Examination of the host RNA fragments revealed that a subset of the ORF57-bound RNAs was derived from transcript 5´ ends. The position of these 5´-bound fragments correlated closely with the 5´-most exon-intron junction of the pre-mRNA. We selected four candidates (BTG1, EGR1, ZFP36, and TNFSF9) and analyzed their pre-mRNA and mRNA levels during lytic phase. Analysis of both steady-state and newly made RNAs revealed that these candidate ORF57-bound pre-mRNAs persisted for longer periods of time throughout infection than control RNAs, consistent with a role for ORF57 in pre-mRNA metabolism. In addition, exogenous expression of ORF57 was sufficient to increase the pre-mRNA levels and, in one case, the mRNA levels of the putative ORF57 targets. These results demonstrate that ORF57 interacts with specific host pre-mRNAs during lytic reactivation and alters their processing, likely by stabilizing pre-mRNAs. These data suggest that ORF57 is involved in modulating host gene expression in addition to KSHV gene expression during lytic reactivation.

UR - http://www.scopus.com/inward/record.url?scp=84924368772&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84924368772&partnerID=8YFLogxK

U2 - 10.1371/journal.ppat.1004652

DO - 10.1371/journal.ppat.1004652

M3 - Article

VL - 11

JO - PLoS Pathogens

JF - PLoS Pathogens

SN - 1553-7366

IS - 2

M1 - e1004652

ER -