Humanized Exposures of a β-Lactam-β-Lactamase Inhibitor, Tazobactam, versus Non-β-Lactam-β-Lactamase Inhibitor, Avibactam, with or without Colistin, against Acinetobacter baumannii in Murine Thigh and Lung Infection Models

Marguerite L. Monogue, George Sakoulas, Victor Nizet, David P. Nicolau

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

β-lactam-β-lactamase inhibitors (BLIs) have previously demonstrated antimicrobial activity against Acinetobacter baumannii (AB). Colistin retains the highest susceptibility rate against A. baumannii, and has demonstrated synergy with other antimicrobials, including β-lactam-BLIs. Therefore, we assessed the potential individual activity and synergistic combinations in vivo against carbapenem-susceptible (CS) and multidrug-resistant (MDR) A. baumannii isolates in neutropenic thigh and lung infection models. In vitro, colistin and tazobactam MICs were 1 and 16 μg/mL against AB 25-49 (CS) and 1 and 128 μg/mL against AB 5075 (MDR) respectively. In the lung model, tazobactam alone and in combination with colistin achieved a 1-log reduction in CFU, while colistin alone was not active against AB 25-49. No activity was observed against AB 5075. In the thigh model, tazobactam with and without colistin was bacteriostatic against AB 25-49 but did not demonstrate any activity against AB 5075. Avibactam and colistin alone and in combination were not active against either isolate. No synergy was observed; however, we found tazobactam activity against A. baumannii. This activity was not observed for the non-β-lactam-BLI, avibactam. This suggests that binding to penicillin-binding proteins of the β-lactam molecule is required for tazobactam activity against A. baumannii. These data point to an added role of β-lactam-BLIs beyond their primary purpose of β-lactamase inhibition in the treatment of MDR A. baumannii infections by enhancing the activity of peptide antibiotics, a property that is not shared by the novel non-β-lactam-BLIs. Future studies are needed to define tazobactam and colistin activity in an A. baumannii infection model.

Original languageEnglish (US)
Pages (from-to)255-261
Number of pages7
JournalPharmacology
Volume101
Issue number5-6
DOIs
StatePublished - Apr 1 2018
Externally publishedYes

Fingerprint

Colistin
Acinetobacter baumannii
Lactams
Thigh
Lung
Infection
Acinetobacter Infections
Carbapenems
avibactam
tazobactam
Penicillin-Binding Proteins

Keywords

  • Acinetobacter baumannii
  • Colistin
  • Tazobactam

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{83c158a3adbc4fa0b236a48f1a889cb6,
title = "Humanized Exposures of a β-Lactam-β-Lactamase Inhibitor, Tazobactam, versus Non-β-Lactam-β-Lactamase Inhibitor, Avibactam, with or without Colistin, against Acinetobacter baumannii in Murine Thigh and Lung Infection Models",
abstract = "β-lactam-β-lactamase inhibitors (BLIs) have previously demonstrated antimicrobial activity against Acinetobacter baumannii (AB). Colistin retains the highest susceptibility rate against A. baumannii, and has demonstrated synergy with other antimicrobials, including β-lactam-BLIs. Therefore, we assessed the potential individual activity and synergistic combinations in vivo against carbapenem-susceptible (CS) and multidrug-resistant (MDR) A. baumannii isolates in neutropenic thigh and lung infection models. In vitro, colistin and tazobactam MICs were 1 and 16 μg/mL against AB 25-49 (CS) and 1 and 128 μg/mL against AB 5075 (MDR) respectively. In the lung model, tazobactam alone and in combination with colistin achieved a 1-log reduction in CFU, while colistin alone was not active against AB 25-49. No activity was observed against AB 5075. In the thigh model, tazobactam with and without colistin was bacteriostatic against AB 25-49 but did not demonstrate any activity against AB 5075. Avibactam and colistin alone and in combination were not active against either isolate. No synergy was observed; however, we found tazobactam activity against A. baumannii. This activity was not observed for the non-β-lactam-BLI, avibactam. This suggests that binding to penicillin-binding proteins of the β-lactam molecule is required for tazobactam activity against A. baumannii. These data point to an added role of β-lactam-BLIs beyond their primary purpose of β-lactamase inhibition in the treatment of MDR A. baumannii infections by enhancing the activity of peptide antibiotics, a property that is not shared by the novel non-β-lactam-BLIs. Future studies are needed to define tazobactam and colistin activity in an A. baumannii infection model.",
keywords = "Acinetobacter baumannii, Colistin, Tazobactam",
author = "Monogue, {Marguerite L.} and George Sakoulas and Victor Nizet and Nicolau, {David P.}",
year = "2018",
month = "4",
day = "1",
doi = "10.1159/000486445",
language = "English (US)",
volume = "101",
pages = "255--261",
journal = "Pharmacology",
issn = "0031-7012",
publisher = "S. Karger AG",
number = "5-6",

}

TY - JOUR

T1 - Humanized Exposures of a β-Lactam-β-Lactamase Inhibitor, Tazobactam, versus Non-β-Lactam-β-Lactamase Inhibitor, Avibactam, with or without Colistin, against Acinetobacter baumannii in Murine Thigh and Lung Infection Models

AU - Monogue, Marguerite L.

AU - Sakoulas, George

AU - Nizet, Victor

AU - Nicolau, David P.

PY - 2018/4/1

Y1 - 2018/4/1

N2 - β-lactam-β-lactamase inhibitors (BLIs) have previously demonstrated antimicrobial activity against Acinetobacter baumannii (AB). Colistin retains the highest susceptibility rate against A. baumannii, and has demonstrated synergy with other antimicrobials, including β-lactam-BLIs. Therefore, we assessed the potential individual activity and synergistic combinations in vivo against carbapenem-susceptible (CS) and multidrug-resistant (MDR) A. baumannii isolates in neutropenic thigh and lung infection models. In vitro, colistin and tazobactam MICs were 1 and 16 μg/mL against AB 25-49 (CS) and 1 and 128 μg/mL against AB 5075 (MDR) respectively. In the lung model, tazobactam alone and in combination with colistin achieved a 1-log reduction in CFU, while colistin alone was not active against AB 25-49. No activity was observed against AB 5075. In the thigh model, tazobactam with and without colistin was bacteriostatic against AB 25-49 but did not demonstrate any activity against AB 5075. Avibactam and colistin alone and in combination were not active against either isolate. No synergy was observed; however, we found tazobactam activity against A. baumannii. This activity was not observed for the non-β-lactam-BLI, avibactam. This suggests that binding to penicillin-binding proteins of the β-lactam molecule is required for tazobactam activity against A. baumannii. These data point to an added role of β-lactam-BLIs beyond their primary purpose of β-lactamase inhibition in the treatment of MDR A. baumannii infections by enhancing the activity of peptide antibiotics, a property that is not shared by the novel non-β-lactam-BLIs. Future studies are needed to define tazobactam and colistin activity in an A. baumannii infection model.

AB - β-lactam-β-lactamase inhibitors (BLIs) have previously demonstrated antimicrobial activity against Acinetobacter baumannii (AB). Colistin retains the highest susceptibility rate against A. baumannii, and has demonstrated synergy with other antimicrobials, including β-lactam-BLIs. Therefore, we assessed the potential individual activity and synergistic combinations in vivo against carbapenem-susceptible (CS) and multidrug-resistant (MDR) A. baumannii isolates in neutropenic thigh and lung infection models. In vitro, colistin and tazobactam MICs were 1 and 16 μg/mL against AB 25-49 (CS) and 1 and 128 μg/mL against AB 5075 (MDR) respectively. In the lung model, tazobactam alone and in combination with colistin achieved a 1-log reduction in CFU, while colistin alone was not active against AB 25-49. No activity was observed against AB 5075. In the thigh model, tazobactam with and without colistin was bacteriostatic against AB 25-49 but did not demonstrate any activity against AB 5075. Avibactam and colistin alone and in combination were not active against either isolate. No synergy was observed; however, we found tazobactam activity against A. baumannii. This activity was not observed for the non-β-lactam-BLI, avibactam. This suggests that binding to penicillin-binding proteins of the β-lactam molecule is required for tazobactam activity against A. baumannii. These data point to an added role of β-lactam-BLIs beyond their primary purpose of β-lactamase inhibition in the treatment of MDR A. baumannii infections by enhancing the activity of peptide antibiotics, a property that is not shared by the novel non-β-lactam-BLIs. Future studies are needed to define tazobactam and colistin activity in an A. baumannii infection model.

KW - Acinetobacter baumannii

KW - Colistin

KW - Tazobactam

UR - http://www.scopus.com/inward/record.url?scp=85044042433&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044042433&partnerID=8YFLogxK

U2 - 10.1159/000486445

DO - 10.1159/000486445

M3 - Article

C2 - 29533955

AN - SCOPUS:85044042433

VL - 101

SP - 255

EP - 261

JO - Pharmacology

JF - Pharmacology

SN - 0031-7012

IS - 5-6

ER -