Ictal high-frequency oscillations in neocortical epilepsy: Implications for seizure localization and surgical resection

Pradeep N. Modur, Song Zhang, Todd W. Vitaz

Research output: Contribution to journalArticle

65 Scopus citations

Abstract

Purpose: To investigate the characteristics of intracranial ictal high-frequency oscillations (HFOs). Methods: Among neocortical epilepsy patients who underwent intracranial monitoring and surgery, we studied patients with well-defined, unifocal seizure onsets characterized by discrete HFOs (≥70 Hz). Patients with multifocal or bilateral independent seizure onsets, electroencephalography (EEG) acquired at <1,000 Hz sampling rate, and nonresective surgery were excluded. Based on a prospectively defined protocol, we defined the seizure-onset zone (SOZ) presurgically to include only those channels with HFOs that showed subsequent sustained evolution (HFOs+ channels) but not the channels that lacked evolution (HFOs- channels). We then resected the SOZ as defined above, 1 cm of the surrounding cortex, and immediate spread area, modified by the presence of eloquent cortex in the vicinity. For purposes of this study, we also defined the SOZ based on the conventional frequency activity (CFA, <70 Hz) at seizure onset, although that information was not considered for preoperative determination of the surgical boundary. We investigated the temporal and spatial characteristics of the ictal HFOs post hoc by visual and spectral methods, and also compared them to the seizure onset defined by the CFA. Key Findings: Of 14 consecutive neocortical epilepsy patients, six patients met the inclusion criteria. Magnetic resonance imaging (MRI) was normal or showed heterotopia. All had subdural electrodes, with additional intracerebral depth electrodes in some. Electrode coverage was extensive (median 94 channels), including limited contralateral coverage. Seizure onsets were lobar or multilobar. Resections were performed per protocol, except in two patients where complete resection of the SOZ could not be done due to overlap with speech area. Histology was abnormal in all patients. Postoperative outcome was class I/II (n = 5, 83%) or class III over a mean follow-up of 27 months. Post hoc analysis of 15 representative seizures showed that the ictal HFOs were widespread at seizure onset but evolved subsequently with different characteristics. In contrast to HFOs-, the HFOs+ were significantly higher in peak frequency (97.1 vs. 89.1 Hz, p = 0.001), more robust (nearly twofold higher peak power, p < 0.0001), and spatially restricted [mean 12.2 vs. 22.4 channels; odds ratio (OR) 0.51, 95% confidence interval (CI) 0.42-0.62; p < 0.0001]. The seizure onset defined by HFOs+ was earlier (by an average of 0.41 s), and occurred in a significantly different and smaller distribution (OR 0.27, 95% CI 0.21-0.34, p < 0.0001), than the seizure onset defined by the CFA. As intended, the HFOs+ channels were 10 times more likely to have been resected than the HFOs- channels (OR 9.7, 95% CI 5-17, p < 0.0001). Significance: Our study demonstrates the widespread occurrence of ictal HFOs at seizure onset, outlines a practical method to localize the SOZ based on their restricted pattern of evolution, and highlights the differences between the SOZs defined by HFOs and CFA. We show that smaller resections, restricted mainly to the HFOs channels with evolution, can lead to favorable seizure outcome. Our findings support the notion of widespread epileptic networks underlying neocortical epilepsy.

Original languageEnglish (US)
Pages (from-to)1792-1801
Number of pages10
JournalEpilepsia
Volume52
Issue number10
DOIs
StatePublished - Oct 2011

Keywords

  • Epilepsy surgery
  • High frequency oscillations
  • Intracranial EEG
  • Seizure

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Ictal high-frequency oscillations in neocortical epilepsy: Implications for seizure localization and surgical resection'. Together they form a unique fingerprint.

  • Cite this