Identification of bbox1 as a therapeutic target in triple-negative breast cancer

Chengheng Liao, Yang Zhang, Cheng Fan, Laura E. Herring, Juan Liu, Jason W. Locasale, Mamoru Takada, Jin Zhou, Giada Zurlo, Lianxin Hu, Jeremy M. Simon, Travis S. Ptacek, Victor G. Andrianov, Einars Loza, Yan Peng, Huanghe Yang, Charles M. Perou, Qing Zhang

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease. Because of its heterogeneity and lack of hormone receptors or HER2 expression, targeted therapy is limited. Here, by performing a functional siRNA screening for 2-OG–dependent enzymes, we identified gamma-butyrobetaine hydroxylase 1 (BBOX1) as an essential gene for TNBC tumorigenesis. BBOX1 depletion inhibits TNBC cell growth while not affecting normal breast cells. Mechanistically, BBOX1 binds with the calcium channel inositol-1,4,5-trisphosphate receptor type 3 (IP3R3) in an enzymatic-dependent manner and prevents its ubiquitination and proteasomal degrada-tion. BBOX1 depletion suppresses IP3R3-mediated endoplasmic reticulum calcium release, therefore impairing calcium-dependent energy-generating processes including mitochondrial respiration and mTORC1-mediated glycolysis, which leads to apoptosis and impaired cell-cycle progression in TNBC cells. Therapeutically, genetic depletion or pharmacologic inhibition of BBOX1 inhibits TNBC tumor growth in vitro and in vivo. Our study highlights the importance of targeting the previously uncharacter-ized BBOX1–IP3R3–calcium oncogenic signaling axis in TNBC. SIGNIFICANCE: We provide evidence from unbiased screens that BBOX1 is a potential therapeutic target in TNBC and that genetic knockdown or pharmacologic inhibition of BBOX1 leads to decreased TNBC cell fitness. This study lays the foundation for developing effective BBOX1 inhibitors for treatment of this lethal disease.

Original languageEnglish (US)
Pages (from-to)1707-1721
Number of pages15
JournalCancer discovery
Volume10
Issue number11
DOIs
StatePublished - Nov 2020

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'Identification of bbox1 as a therapeutic target in triple-negative breast cancer'. Together they form a unique fingerprint.

Cite this