Identification of CREB3L1 as a biomarker predicting doxorubicin treatment outcome

Bray Denard, Andrea Pavia-Jimenez, Weina Chen, Noelle S. Williams, Harris Naina, Robert Collins, James Brugarolas, Jin Ye

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

Background: Doxorubicin has been shown to inhibit proliferation of cancer cells through proteolytic activation of CREB3L1 (cAMP response element binding protein 3-like 1), a transcription factor synthesized as a membrane-bound precursor. Upon doxorubicin treatment, CREB3L1 is cleaved so that the N-terminal domain of the protein can reach the nucleus where it activates transcription of genes that inhibit cell proliferation. These results suggest that the level of CREB3L1 in cancer cells may determine their sensitivity to doxorubicin. Methods: Mice transplanted with 6 lines of renal cell carcinoma (RCC) were injected with doxorubicin to observe the effect of the chemotherapy on tumor growth. Immunohistochemistry and bioinformatics analyses were performed to compare CREB3L1 levels in types of cancer known to respond to doxorubicin versus those resistant to doxorubicin. Results: Higher levels of CREB3L1 protein are correlated with increased doxorubicin sensitivity of xenograft RCC tumors (p = 0.017 by Pearson analysis). From patient tumor biopsies we analyzed, CREB3L1 was expressed in 19% of RCC, which is generally resistant to doxorubicin, but in 70% of diffuse large B-cell lymphoma that is sensitive to doxorubicin. Doxorubicin is used as the standard treatment for cancers that express the highest levels of CREB3L1 such as osteosarcoma and malignant fibrous histiocytoma but is not generally used to treat those that express the lowest levels of CREB3L1 such as RCC. Conclusion: Identification of CREB3L1 as the biomarker for doxorubicin sensitivity may markedly improve the doxorubicin response rate by applying doxorubicin only to patients with cancers expressing CREB3L1.

Original languageEnglish (US)
Article numbere0129233
JournalPLoS One
Volume10
Issue number6
DOIs
StatePublished - Jun 25 2015

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Fingerprint Dive into the research topics of 'Identification of CREB3L1 as a biomarker predicting doxorubicin treatment outcome'. Together they form a unique fingerprint.

  • Cite this