Identification of yeast oxidized proteins. Chromatographic top-down approach for identification of carbonylated, fragmented and cross-linked proteins in yeast

Hamid Mirzaei, Fred Regnier

Research output: Contribution to journalArticle

54 Scopus citations


The effects of oxidative stress on the yeast proteome were studied using hydrogen peroxide as the stress agent. Oxidized proteins were isolated by (1) biotinylation of oxidized proteins with biotin hydrazide, (2) affinity selection using monomeric avidin affinity chromatography, and (3) further fractionated by reversed-phase liquid chromatography (RPLC) on a C8 column. Oxidized protein fractions from RPLC were then trypsin digested and the peptide cleavage fragments identified by tandem mass spectrometry (MS/MS). Slightly over 400 proteins were identified. Sites of carbonyl formation were found in roughly one fourth of these proteins. Oxidation on other amino acids in carbonylated peptides was seen in 32 cases while carbonylation was absent in 96 of the oxidized proteins observed. Although there are large numbers of potential oxidation sites, oxidation seemed to be restricted to a small area in most of the proteins identified. Sometimes multiple amino acids in the same tryptic peptide were oxidized. A second trend was that more than 8% of the proteins identified appeared in more than one of the RPLC fractions. Based on the position of the peptides identified in the primary structure of protein candidates derived from databases it was concluded that this occurred by fragmentation of a parent protein. It is not clear from the data whether the fragmentation process was of enzymatic or oxidative origin. Finally, peptides from two or more proteins occurred together in more than one reversed phase fraction with 2% of the proteins identified. This data was interpreted to mean that this was the result of protein cross-linking.

Original languageEnglish (US)
Pages (from-to)22-31
Number of pages10
JournalJournal of Chromatography A
Issue number1
StatePublished - Feb 2 2007



  • Affinity chromatography
  • Biotin hydrazide
  • Carbonylation
  • Hydrogen peroxide
  • Mass spectrometry
  • Oxidative stress
  • Protein cross-linking
  • Protein fragmentation
  • Proteomics
  • Specific sites of oxidation
  • Tandem mass spectrometry
  • Yeast

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Organic Chemistry

Cite this