Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder

Yuhui Du, Godfrey D. Pearlson, Dongdong Lin, Jing Sui, Jiayu Chen, Mustafa Salman, Carol A. Tamminga, Elena I. Ivleva, John A. Sweeney, Matcheri S. Keshavan, Brett A. Clementz, Juan Bustillo, Vince D. Calhoun

Research output: Contribution to journalArticle

37 Scopus citations

Abstract

Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic functional connectivity (DFC) in mental disorders. Here, we aim to explore DFC across a spectrum of symptomatically-related disorders including bipolar disorder with psychosis (BPP), schizoaffective disorder (SAD), and schizophrenia (SZ). We introduce a group information guided independent component analysis procedure to estimate both group-level and subject-specific connectivity states from DFC. Using resting-state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD, and 113 SZ patients, we identified measures differentiating groups from the whole-brain DFC and traditional static functional connectivity (SFC), separately. Results show that DFC provided more informative measures than SFC. Diagnosis-related connectivity states were evident using DFC analysis. For the dominant state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly involving post-central, frontal, and cerebellar cortices as well as 34 examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities involving the left cerebellar crus differentiated SZ from other groups and one connection linking frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis. Hum Brain Mapp 38:2683–2708, 2017.

Original languageEnglish (US)
Pages (from-to)2683-2708
Number of pages26
JournalHuman Brain Mapping
Volume38
Issue number5
DOIs
StatePublished - May 1 2017

Keywords

  • bipolar disorder
  • dynamic functional connectivity
  • functional magnetic resonance imaging
  • independent component analysis
  • schizoaffective disorder
  • schizophrenia

ASJC Scopus subject areas

  • Anatomy
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder'. Together they form a unique fingerprint.

  • Cite this

    Du, Y., Pearlson, G. D., Lin, D., Sui, J., Chen, J., Salman, M., Tamminga, C. A., Ivleva, E. I., Sweeney, J. A., Keshavan, M. S., Clementz, B. A., Bustillo, J., & Calhoun, V. D. (2017). Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder. Human Brain Mapping, 38(5), 2683-2708. https://doi.org/10.1002/hbm.23553