IL-12/IL-23p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of EAE, but its deletion does not affect disease perpetuation

Petra D. Cravens, Rehana Z. Hussain, William A. Miller-Little, Li Hong Ben, Benjamin M. Segal, Emily Herndon, Olaf Stüve

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Background Interleukin (IL)-12 and IL-23 are heterodimers that share the p40 subunit, and both cytokines are critical in the differentiation of T helper (Th)1 and Th17 cells, respectively. Th1 and Th17 effector cells have been implicated in the pathogenesis of experimental autoimmune encephalitis (EAE), an animal model of the human central nervous system (CNS) autoimmune demyelinating disorder multiple sclerosis (MS). However, ustekinumab, a monoclonal antibody (mAb) against p40 failed to show efficacy over placebo in a phase II clinical trial in patients with MS. The role of p40 in initial T cell priming and maintenance in secondary lymphoid tissues is not yet well understood. Methods Active EAE was induced in the B6.129-IL12b strain of p40eYFP reporter mice (yet40 mice), and Th1 and Th17 polarized cells were adoptively transferred into p40-deficient mice. Cellular subsets were phenotyped by multi-parameter flow cytometry, and p40 tissue expression was identified by confocal microscopy. Results We show that yet40 mice are susceptible to EAE, and that p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of the disease. Interestingly, p40 expression in the recipient is not required for EAE induction after adoptive transfer of activated and differentiated encephalitogenic Th1 and Th17 cells into p40-deficient mice. Peripheral antagonism of T helper cell trophic factors critical for the differentiation and maintenance of Th1 and Th17 cells ameliorates EAE, indicating that p40 may play a critical role in the induction of CNS autoimmunity but not in its perpetuation. Conclusion Our data may explain why ustekinumab did not ameliorate paraclinical and clinical disease in patients with MS. In patients with already established disease, activated antigen-specific encephalitogenic CD4+ T cells are likely already differentiated, and are not dependent on p40 for maintenance. A clinical trial of longer duration with anti-p40 mAbs or other forms of pharmacological p40 antagonism, or sequential anti-p40 therapy following T cell depletion may show a benefit by affecting de novo generation of autoimmune T cells.

Original languageEnglish (US)
Article numbere0165248
JournalPLoS One
Volume11
Issue number10
DOIs
StatePublished - Oct 1 2016

Fingerprint

Interleukins
interleukin-12
Neurology
interleukins
Interleukin-12
encephalitis
central nervous system
Central Nervous System
T-lymphocytes
sclerosis
mice
Th17 Cells
T-cells
cells
clinical trials
Th1 Cells
autoimmunity
Multiple Sclerosis
T-Lymphocytes
placebos

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

IL-12/IL-23p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of EAE, but its deletion does not affect disease perpetuation. / Cravens, Petra D.; Hussain, Rehana Z.; Miller-Little, William A.; Ben, Li Hong; Segal, Benjamin M.; Herndon, Emily; Stüve, Olaf.

In: PLoS One, Vol. 11, No. 10, e0165248, 01.10.2016.

Research output: Contribution to journalArticle

Cravens, Petra D. ; Hussain, Rehana Z. ; Miller-Little, William A. ; Ben, Li Hong ; Segal, Benjamin M. ; Herndon, Emily ; Stüve, Olaf. / IL-12/IL-23p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of EAE, but its deletion does not affect disease perpetuation. In: PLoS One. 2016 ; Vol. 11, No. 10.
@article{93a05025c42745fe9a250b0c00413422,
title = "IL-12/IL-23p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of EAE, but its deletion does not affect disease perpetuation",
abstract = "Background Interleukin (IL)-12 and IL-23 are heterodimers that share the p40 subunit, and both cytokines are critical in the differentiation of T helper (Th)1 and Th17 cells, respectively. Th1 and Th17 effector cells have been implicated in the pathogenesis of experimental autoimmune encephalitis (EAE), an animal model of the human central nervous system (CNS) autoimmune demyelinating disorder multiple sclerosis (MS). However, ustekinumab, a monoclonal antibody (mAb) against p40 failed to show efficacy over placebo in a phase II clinical trial in patients with MS. The role of p40 in initial T cell priming and maintenance in secondary lymphoid tissues is not yet well understood. Methods Active EAE was induced in the B6.129-IL12b strain of p40eYFP reporter mice (yet40 mice), and Th1 and Th17 polarized cells were adoptively transferred into p40-deficient mice. Cellular subsets were phenotyped by multi-parameter flow cytometry, and p40 tissue expression was identified by confocal microscopy. Results We show that yet40 mice are susceptible to EAE, and that p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of the disease. Interestingly, p40 expression in the recipient is not required for EAE induction after adoptive transfer of activated and differentiated encephalitogenic Th1 and Th17 cells into p40-deficient mice. Peripheral antagonism of T helper cell trophic factors critical for the differentiation and maintenance of Th1 and Th17 cells ameliorates EAE, indicating that p40 may play a critical role in the induction of CNS autoimmunity but not in its perpetuation. Conclusion Our data may explain why ustekinumab did not ameliorate paraclinical and clinical disease in patients with MS. In patients with already established disease, activated antigen-specific encephalitogenic CD4+ T cells are likely already differentiated, and are not dependent on p40 for maintenance. A clinical trial of longer duration with anti-p40 mAbs or other forms of pharmacological p40 antagonism, or sequential anti-p40 therapy following T cell depletion may show a benefit by affecting de novo generation of autoimmune T cells.",
author = "Cravens, {Petra D.} and Hussain, {Rehana Z.} and Miller-Little, {William A.} and Ben, {Li Hong} and Segal, {Benjamin M.} and Emily Herndon and Olaf St{\"u}ve",
year = "2016",
month = "10",
day = "1",
doi = "10.1371/journal.pone.0165248",
language = "English (US)",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - IL-12/IL-23p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of EAE, but its deletion does not affect disease perpetuation

AU - Cravens, Petra D.

AU - Hussain, Rehana Z.

AU - Miller-Little, William A.

AU - Ben, Li Hong

AU - Segal, Benjamin M.

AU - Herndon, Emily

AU - Stüve, Olaf

PY - 2016/10/1

Y1 - 2016/10/1

N2 - Background Interleukin (IL)-12 and IL-23 are heterodimers that share the p40 subunit, and both cytokines are critical in the differentiation of T helper (Th)1 and Th17 cells, respectively. Th1 and Th17 effector cells have been implicated in the pathogenesis of experimental autoimmune encephalitis (EAE), an animal model of the human central nervous system (CNS) autoimmune demyelinating disorder multiple sclerosis (MS). However, ustekinumab, a monoclonal antibody (mAb) against p40 failed to show efficacy over placebo in a phase II clinical trial in patients with MS. The role of p40 in initial T cell priming and maintenance in secondary lymphoid tissues is not yet well understood. Methods Active EAE was induced in the B6.129-IL12b strain of p40eYFP reporter mice (yet40 mice), and Th1 and Th17 polarized cells were adoptively transferred into p40-deficient mice. Cellular subsets were phenotyped by multi-parameter flow cytometry, and p40 tissue expression was identified by confocal microscopy. Results We show that yet40 mice are susceptible to EAE, and that p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of the disease. Interestingly, p40 expression in the recipient is not required for EAE induction after adoptive transfer of activated and differentiated encephalitogenic Th1 and Th17 cells into p40-deficient mice. Peripheral antagonism of T helper cell trophic factors critical for the differentiation and maintenance of Th1 and Th17 cells ameliorates EAE, indicating that p40 may play a critical role in the induction of CNS autoimmunity but not in its perpetuation. Conclusion Our data may explain why ustekinumab did not ameliorate paraclinical and clinical disease in patients with MS. In patients with already established disease, activated antigen-specific encephalitogenic CD4+ T cells are likely already differentiated, and are not dependent on p40 for maintenance. A clinical trial of longer duration with anti-p40 mAbs or other forms of pharmacological p40 antagonism, or sequential anti-p40 therapy following T cell depletion may show a benefit by affecting de novo generation of autoimmune T cells.

AB - Background Interleukin (IL)-12 and IL-23 are heterodimers that share the p40 subunit, and both cytokines are critical in the differentiation of T helper (Th)1 and Th17 cells, respectively. Th1 and Th17 effector cells have been implicated in the pathogenesis of experimental autoimmune encephalitis (EAE), an animal model of the human central nervous system (CNS) autoimmune demyelinating disorder multiple sclerosis (MS). However, ustekinumab, a monoclonal antibody (mAb) against p40 failed to show efficacy over placebo in a phase II clinical trial in patients with MS. The role of p40 in initial T cell priming and maintenance in secondary lymphoid tissues is not yet well understood. Methods Active EAE was induced in the B6.129-IL12b strain of p40eYFP reporter mice (yet40 mice), and Th1 and Th17 polarized cells were adoptively transferred into p40-deficient mice. Cellular subsets were phenotyped by multi-parameter flow cytometry, and p40 tissue expression was identified by confocal microscopy. Results We show that yet40 mice are susceptible to EAE, and that p40 is highly expressed in secondary lymphoid organs and the CNS during all stages of the disease. Interestingly, p40 expression in the recipient is not required for EAE induction after adoptive transfer of activated and differentiated encephalitogenic Th1 and Th17 cells into p40-deficient mice. Peripheral antagonism of T helper cell trophic factors critical for the differentiation and maintenance of Th1 and Th17 cells ameliorates EAE, indicating that p40 may play a critical role in the induction of CNS autoimmunity but not in its perpetuation. Conclusion Our data may explain why ustekinumab did not ameliorate paraclinical and clinical disease in patients with MS. In patients with already established disease, activated antigen-specific encephalitogenic CD4+ T cells are likely already differentiated, and are not dependent on p40 for maintenance. A clinical trial of longer duration with anti-p40 mAbs or other forms of pharmacological p40 antagonism, or sequential anti-p40 therapy following T cell depletion may show a benefit by affecting de novo generation of autoimmune T cells.

UR - http://www.scopus.com/inward/record.url?scp=84992432068&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84992432068&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0165248

DO - 10.1371/journal.pone.0165248

M3 - Article

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e0165248

ER -