Impact of personalization on epileptic seizure prediction

Javad Birjandtalab, Vipul Nataraj Jarmale, Mehrdad Nourani, Jay Harvey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The main contribution of this paper is a personalization method which systematically selects the algorithm's parameters based on patient's individual data. The conventional seizure prediction techniques use a fixed set of parameters (like window size and time-to-seizure of preictal data). In this work, we report how personalizing the preictal data parameters improves the quality of seizure prediction. Experimental results show that using a personalized small set of parameters increase the F-measure accuracy of seizure prediction.

Original languageEnglish (US)
Title of host publication2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728108483
DOIs
StatePublished - May 2019
Event2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Chicago, United States
Duration: May 19 2019May 22 2019

Publication series

Name2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings

Conference

Conference2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019
CountryUnited States
CityChicago
Period5/19/195/22/19

Fingerprint

Epilepsy
Seizures
Prediction
Personalization

Keywords

  • EEG
  • Epileptic Seizure
  • Parameter Assessment
  • Personalization
  • Seizure Prediction

ASJC Scopus subject areas

  • Artificial Intelligence
  • Signal Processing
  • Information Systems and Management
  • Biomedical Engineering
  • Health Informatics
  • Radiology Nuclear Medicine and imaging

Cite this

Birjandtalab, J., Jarmale, V. N., Nourani, M., & Harvey, J. (2019). Impact of personalization on epileptic seizure prediction. In 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings [8834648] (2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BHI.2019.8834648

Impact of personalization on epileptic seizure prediction. / Birjandtalab, Javad; Jarmale, Vipul Nataraj; Nourani, Mehrdad; Harvey, Jay.

2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 2019. 8834648 (2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Birjandtalab, J, Jarmale, VN, Nourani, M & Harvey, J 2019, Impact of personalization on epileptic seizure prediction. in 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings., 8834648, 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019, Chicago, United States, 5/19/19. https://doi.org/10.1109/BHI.2019.8834648
Birjandtalab J, Jarmale VN, Nourani M, Harvey J. Impact of personalization on epileptic seizure prediction. In 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc. 2019. 8834648. (2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings). https://doi.org/10.1109/BHI.2019.8834648
Birjandtalab, Javad ; Jarmale, Vipul Nataraj ; Nourani, Mehrdad ; Harvey, Jay. / Impact of personalization on epileptic seizure prediction. 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 2019. (2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings).
@inproceedings{24dcd76ed23b4329be02e3a1600eb2f4,
title = "Impact of personalization on epileptic seizure prediction",
abstract = "The main contribution of this paper is a personalization method which systematically selects the algorithm's parameters based on patient's individual data. The conventional seizure prediction techniques use a fixed set of parameters (like window size and time-to-seizure of preictal data). In this work, we report how personalizing the preictal data parameters improves the quality of seizure prediction. Experimental results show that using a personalized small set of parameters increase the F-measure accuracy of seizure prediction.",
keywords = "EEG, Epileptic Seizure, Parameter Assessment, Personalization, Seizure Prediction",
author = "Javad Birjandtalab and Jarmale, {Vipul Nataraj} and Mehrdad Nourani and Jay Harvey",
year = "2019",
month = "5",
doi = "10.1109/BHI.2019.8834648",
language = "English (US)",
series = "2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings",

}

TY - GEN

T1 - Impact of personalization on epileptic seizure prediction

AU - Birjandtalab, Javad

AU - Jarmale, Vipul Nataraj

AU - Nourani, Mehrdad

AU - Harvey, Jay

PY - 2019/5

Y1 - 2019/5

N2 - The main contribution of this paper is a personalization method which systematically selects the algorithm's parameters based on patient's individual data. The conventional seizure prediction techniques use a fixed set of parameters (like window size and time-to-seizure of preictal data). In this work, we report how personalizing the preictal data parameters improves the quality of seizure prediction. Experimental results show that using a personalized small set of parameters increase the F-measure accuracy of seizure prediction.

AB - The main contribution of this paper is a personalization method which systematically selects the algorithm's parameters based on patient's individual data. The conventional seizure prediction techniques use a fixed set of parameters (like window size and time-to-seizure of preictal data). In this work, we report how personalizing the preictal data parameters improves the quality of seizure prediction. Experimental results show that using a personalized small set of parameters increase the F-measure accuracy of seizure prediction.

KW - EEG

KW - Epileptic Seizure

KW - Parameter Assessment

KW - Personalization

KW - Seizure Prediction

UR - http://www.scopus.com/inward/record.url?scp=85073031213&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85073031213&partnerID=8YFLogxK

U2 - 10.1109/BHI.2019.8834648

DO - 10.1109/BHI.2019.8834648

M3 - Conference contribution

AN - SCOPUS:85073031213

T3 - 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings

BT - 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings

PB - Institute of Electrical and Electronics Engineers Inc.

ER -