In vivo demonstration of cancer molecular imaging with ultrasound radiation force and buried-ligand microbubbles

Mark A. Borden, Jason E. Streeter, Shashank R. Sirsi, Paul A. Dayton

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

In designing targeted contrast agent materials for imaging, the need to present a targeting ligand for recognition and binding by the target is counterbalanced by the need to minimize interactions with plasma components and to avoid recognition by the immune system. We have previously reported on a microbubble imaging probe for ultrasound molecular imaging that uses a buried-ligand surface architecture to minimize unwanted interactions and immunogenicity. Here we examine for the first time the utility of this approach for in vivo molecular imaging. In accordance with previous results, we showed a threefold increase in circulation persistence through the tumor of a fibrosarcoma model in comparison with controls. The buried-ligand microbubbles were then activated for targeted adhesion through the application of noninvasive ultrasound radiation forces applied specifically to the tumor region. Using a clinical ultrasound scanner, microbubbles were activated, imaged, and silenced. The results showed visually conspicuous images of tumor neovasculature and a twofold increase in ultrasound radiation force enhancement of acoustic contrast intensity for buried-ligand microbubbles, whereas no such increase was found for exposed-ligand microbubbles. We therefore conclude that the use of acoustically active buried-ligand microbubbles for ultrasound molecular imaging bridges the demand for low immunogenicity with the necessity of maintaining targeting efficacy and imaging conspicuity in vivo.

Original languageEnglish (US)
JournalMolecular Imaging
Volume12
Issue number6
DOIs
StatePublished - Sep 2013

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Medicine
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'In vivo demonstration of cancer molecular imaging with ultrasound radiation force and buried-ligand microbubbles'. Together they form a unique fingerprint.

Cite this