In vivo photoacoustic (PA) mapping of sentinel lymph nodes (SLNs) using carbon nanotubes (CNTs) as a contrast agent

Manojit Pramanik, Kwang Hyun Song, Magdalena Swierczewska, Danielle Green, Balaji Sitharaman, Lihong V. Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Sentinel lymph node biopsy (SLNB), a less invasive alternative to axillary lymph node dissection (ALND), is routinely used in clinic for staging breast cancer. In SLNB, lymphatic mapping with radio-labeled sulfur colloid and/or blue dye helps identify the sentinel lymph node (SLN), which is most likely to contain metastatic breast cancer. Even though SLNB, using both methylene blue and radioactive tracers, has a high identification rate, it still relies on an invasive surgical procedure, with associated morbidity. In this study, we have demonstrated a non-invasive single-walled carbon nanotube (SWNT)-enhanced photoacoustic (PA) identification of SLN in a rat model. We have used single-walled carbon nanotubes (SWNTs) as a photoacoustic contrast agent to map non-invasively the sentinel lymph nodes (SLNs) in a rat model in vivo. We were able to identify the SLN non-invasively with high contrast to noise ratio (∼90) and high resolution (∼500 μm). Due to the broad photoacoustic spectrum of these nanotubes in the near infrared wavelength window we could easily choose a suitable light wavelength to maximize the imaging depth. Our results suggest that this technology could be a useful clinical tool, allowing clinicians to identify SLNs non-invasively in vivo. In the future, these contrast agents could be functionalized to do molecular photoacoustic imaging.

Original languageEnglish (US)
Title of host publicationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7177
DOIs
StatePublished - 2009
EventPhotons Plus Ultrasound: Imaging and Sensing 2009 - San Jose, CA, United States
Duration: Jan 25 2009Jan 28 2009

Other

OtherPhotons Plus Ultrasound: Imaging and Sensing 2009
Country/TerritoryUnited States
CitySan Jose, CA
Period1/25/091/28/09

Keywords

  • Axillary lymph node dissection
  • Breast cancer
  • Carbon nanotube
  • Photoacoustic tomography
  • Sentinel lymph node biopsy
  • Single-walled carbon nanotube

ASJC Scopus subject areas

  • Applied Mathematics
  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'In vivo photoacoustic (PA) mapping of sentinel lymph nodes (SLNs) using carbon nanotubes (CNTs) as a contrast agent'. Together they form a unique fingerprint.

Cite this