Increased γ- and decreased δ-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons

Rolf H. Joho, Chi Shun Ho, Gerald A. Marks

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

Kv3.1 is a voltage-gated, fast activating/deactivating potassium (K+) channel with a high-threshold of activation and a large unit conductance. Kv3.1 K+ channels are expressed in fast- spiking, parvalbumin-containing interneurons in cortex, hippocampus, striatum, the thalamic reticular nucleus (TRN), and in several nuclei of the brain stem. A high density of Kv3.1 channels contributes to short-duration action potentials, fast afterhyperpolarizations, and brief refractory periods enhancing the capability in these neurons for high-frequency firing. Kv3.1 K+ channel expression 'm the TRN and cortex also suggests a role in thalamocortical and cortical function. Here we show that fast gamma and slow delta oscillations recorded from the somatomotor cortex are altered in the freely behaving Kv3.1 mutant mouse. Electroencephalographic (EEG) recordings from homozygous Kv3.1(-/-) mice show a three- to fourfold increase in both absolute and relative spectral power in the gamma frequency range (20-60 Hz). In contrast, Kv3.1-deficient mice have a 20-50% reduction of power in the slow delta range (2-3 Hz). The increase in gamma power is most prominent during waking in the 40- to 55-Hz range, whereas the decrease in delta power occurs equally across all states of arousal. Our findings suggest that Kv3.1-expressing neurons are involved in the generation and maintenance of cortical fast gamma and slow delta oscillations. Hence the Kv3.1-mutant mouse could serve as a model to study the generation and maintenance of fast gamma and slow delta rhythms and their involvement in behavior and cognition.

Original languageEnglish (US)
Pages (from-to)1855-1864
Number of pages10
JournalJournal of Neurophysiology
Volume82
Issue number4
StatePublished - 1999

Fingerprint

Potassium Channels
Interneurons
Thalamic Nuclei
Delta Rhythm
Maintenance
Neurons
Parvalbumins
Arousal
Cognition
Action Potentials
Brain Stem
Hippocampus
Power (Psychology)

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Increased γ- and decreased δ-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons. / Joho, Rolf H.; Ho, Chi Shun; Marks, Gerald A.

In: Journal of Neurophysiology, Vol. 82, No. 4, 1999, p. 1855-1864.

Research output: Contribution to journalArticle

@article{21be51029a534f7daebc3d1021b1f215,
title = "Increased γ- and decreased δ-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons",
abstract = "Kv3.1 is a voltage-gated, fast activating/deactivating potassium (K+) channel with a high-threshold of activation and a large unit conductance. Kv3.1 K+ channels are expressed in fast- spiking, parvalbumin-containing interneurons in cortex, hippocampus, striatum, the thalamic reticular nucleus (TRN), and in several nuclei of the brain stem. A high density of Kv3.1 channels contributes to short-duration action potentials, fast afterhyperpolarizations, and brief refractory periods enhancing the capability in these neurons for high-frequency firing. Kv3.1 K+ channel expression 'm the TRN and cortex also suggests a role in thalamocortical and cortical function. Here we show that fast gamma and slow delta oscillations recorded from the somatomotor cortex are altered in the freely behaving Kv3.1 mutant mouse. Electroencephalographic (EEG) recordings from homozygous Kv3.1(-/-) mice show a three- to fourfold increase in both absolute and relative spectral power in the gamma frequency range (20-60 Hz). In contrast, Kv3.1-deficient mice have a 20-50{\%} reduction of power in the slow delta range (2-3 Hz). The increase in gamma power is most prominent during waking in the 40- to 55-Hz range, whereas the decrease in delta power occurs equally across all states of arousal. Our findings suggest that Kv3.1-expressing neurons are involved in the generation and maintenance of cortical fast gamma and slow delta oscillations. Hence the Kv3.1-mutant mouse could serve as a model to study the generation and maintenance of fast gamma and slow delta rhythms and their involvement in behavior and cognition.",
author = "Joho, {Rolf H.} and Ho, {Chi Shun} and Marks, {Gerald A.}",
year = "1999",
language = "English (US)",
volume = "82",
pages = "1855--1864",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Increased γ- and decreased δ-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons

AU - Joho, Rolf H.

AU - Ho, Chi Shun

AU - Marks, Gerald A.

PY - 1999

Y1 - 1999

N2 - Kv3.1 is a voltage-gated, fast activating/deactivating potassium (K+) channel with a high-threshold of activation and a large unit conductance. Kv3.1 K+ channels are expressed in fast- spiking, parvalbumin-containing interneurons in cortex, hippocampus, striatum, the thalamic reticular nucleus (TRN), and in several nuclei of the brain stem. A high density of Kv3.1 channels contributes to short-duration action potentials, fast afterhyperpolarizations, and brief refractory periods enhancing the capability in these neurons for high-frequency firing. Kv3.1 K+ channel expression 'm the TRN and cortex also suggests a role in thalamocortical and cortical function. Here we show that fast gamma and slow delta oscillations recorded from the somatomotor cortex are altered in the freely behaving Kv3.1 mutant mouse. Electroencephalographic (EEG) recordings from homozygous Kv3.1(-/-) mice show a three- to fourfold increase in both absolute and relative spectral power in the gamma frequency range (20-60 Hz). In contrast, Kv3.1-deficient mice have a 20-50% reduction of power in the slow delta range (2-3 Hz). The increase in gamma power is most prominent during waking in the 40- to 55-Hz range, whereas the decrease in delta power occurs equally across all states of arousal. Our findings suggest that Kv3.1-expressing neurons are involved in the generation and maintenance of cortical fast gamma and slow delta oscillations. Hence the Kv3.1-mutant mouse could serve as a model to study the generation and maintenance of fast gamma and slow delta rhythms and their involvement in behavior and cognition.

AB - Kv3.1 is a voltage-gated, fast activating/deactivating potassium (K+) channel with a high-threshold of activation and a large unit conductance. Kv3.1 K+ channels are expressed in fast- spiking, parvalbumin-containing interneurons in cortex, hippocampus, striatum, the thalamic reticular nucleus (TRN), and in several nuclei of the brain stem. A high density of Kv3.1 channels contributes to short-duration action potentials, fast afterhyperpolarizations, and brief refractory periods enhancing the capability in these neurons for high-frequency firing. Kv3.1 K+ channel expression 'm the TRN and cortex also suggests a role in thalamocortical and cortical function. Here we show that fast gamma and slow delta oscillations recorded from the somatomotor cortex are altered in the freely behaving Kv3.1 mutant mouse. Electroencephalographic (EEG) recordings from homozygous Kv3.1(-/-) mice show a three- to fourfold increase in both absolute and relative spectral power in the gamma frequency range (20-60 Hz). In contrast, Kv3.1-deficient mice have a 20-50% reduction of power in the slow delta range (2-3 Hz). The increase in gamma power is most prominent during waking in the 40- to 55-Hz range, whereas the decrease in delta power occurs equally across all states of arousal. Our findings suggest that Kv3.1-expressing neurons are involved in the generation and maintenance of cortical fast gamma and slow delta oscillations. Hence the Kv3.1-mutant mouse could serve as a model to study the generation and maintenance of fast gamma and slow delta rhythms and their involvement in behavior and cognition.

UR - http://www.scopus.com/inward/record.url?scp=0344200103&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0344200103&partnerID=8YFLogxK

M3 - Article

C2 - 10515974

AN - SCOPUS:0344200103

VL - 82

SP - 1855

EP - 1864

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 4

ER -