Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells

G. Tezel, M. B. Wax

Research output: Contribution to journalArticlepeer-review

369 Scopus citations

Abstract

Although glial cells in the optic nerve head undergo a reactivation process in glaucoma, the role of glial cells during glaucomatous neurodegeneration of retinal ganglion cells is unknown. Using a coculture system in which retinal ganglion cells and glial cells are grown on different layers but share the same culture medium, we studied the influences of glial cells on survival of retinal ganglion cells after exposure to different stress conditions typified by simulated ischemia and elevated hydrostatic pressure. After the exposure to these stressors, we observed that glial cells secreted tumor necrosis factor-α (TNF-α) as well as other noxious agents such as nitric oxide into the coculture media and facilitated the apoptotic death of retinal ganglion cells as assessed by morphology, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and caspase activity. The glial origin of these noxious effects was confirmed by passive transfer experiments. Furthermore, retinal ganglion cell apoptosis was attenuated ~66% by a neutralizing antibody against TNF-α and 50% by a selective inhibitor of inducible nitric oxide synthase (1400W). Because elevated intraocular pressure and ischemia are two prominent stress factors identified in the eyes of patients with glaucoma, these findings reveal a novel gila-initiated pathogenic mechanism for retinal ganglion cell death in glaucoma. In addition, these findings suggest that the inhibition of TNF-α that is released by reactivated glial cells may provide a novel therapeutic target for neuroprotection in the treatment of glaucomatous optic neuropathy.

Original languageEnglish (US)
Pages (from-to)8693-8700
Number of pages8
JournalJournal of Neuroscience
Volume20
Issue number23
DOIs
StatePublished - Dec 1 2000

Keywords

  • Apoptosis
  • Glaucoma
  • Glia
  • Nitric oxide
  • Retinal ganglion cell
  • Tumor necrosis factor-α

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells'. Together they form a unique fingerprint.

Cite this