Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats

Houli Jiang, John Quilley, Anabel B. Doumad, Angela G. Zhu, J R Falck, Bruce D. Hammock, Charles T. Stier, Mairead A. Carroll

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (Vmax) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1- ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg-1·day-1 for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED50 10-10 M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED50 10-9 M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and transisomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume300
Issue number6
DOIs
StatePublished - Jun 2011

Fingerprint

Inbred SHR Rats
Epoxide Hydrolases
Blood Pressure
Inbred WKY Rats
Vasodilator Agents
Dilatation
Erythrocytes
Antihypertensive Agents
Phospholipids
Hydrolysis
Anti-Inflammatory Agents
Arteries
Lipids
Acids

Keywords

  • Cytochrome P-450
  • Epoxyeicosatrienoic acids
  • Hypertension
  • Soluble epoxide hydrolase

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)
  • Cardiology and Cardiovascular Medicine

Cite this

Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats. / Jiang, Houli; Quilley, John; Doumad, Anabel B.; Zhu, Angela G.; Falck, J R; Hammock, Bruce D.; Stier, Charles T.; Carroll, Mairead A.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 300, No. 6, 06.2011.

Research output: Contribution to journalArticle

Jiang, Houli ; Quilley, John ; Doumad, Anabel B. ; Zhu, Angela G. ; Falck, J R ; Hammock, Bruce D. ; Stier, Charles T. ; Carroll, Mairead A. / Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats. In: American Journal of Physiology - Heart and Circulatory Physiology. 2011 ; Vol. 300, No. 6.
@article{c3baf9d920bd44a8bcafa17450bb807c,
title = "Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats",
abstract = "Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (Vmax) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1- ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg-1·day-1 for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED50 10-10 M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED50 10-9 M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and transisomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.",
keywords = "Cytochrome P-450, Epoxyeicosatrienoic acids, Hypertension, Soluble epoxide hydrolase",
author = "Houli Jiang and John Quilley and Doumad, {Anabel B.} and Zhu, {Angela G.} and Falck, {J R} and Hammock, {Bruce D.} and Stier, {Charles T.} and Carroll, {Mairead A.}",
year = "2011",
month = "6",
doi = "10.1152/ajpheart.01267.2010",
language = "English (US)",
volume = "300",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats

AU - Jiang, Houli

AU - Quilley, John

AU - Doumad, Anabel B.

AU - Zhu, Angela G.

AU - Falck, J R

AU - Hammock, Bruce D.

AU - Stier, Charles T.

AU - Carroll, Mairead A.

PY - 2011/6

Y1 - 2011/6

N2 - Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (Vmax) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1- ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg-1·day-1 for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED50 10-10 M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED50 10-9 M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and transisomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.

AB - Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (Vmax) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1- ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg-1·day-1 for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED50 10-10 M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED50 10-9 M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and transisomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.

KW - Cytochrome P-450

KW - Epoxyeicosatrienoic acids

KW - Hypertension

KW - Soluble epoxide hydrolase

UR - http://www.scopus.com/inward/record.url?scp=79958041570&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79958041570&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.01267.2010

DO - 10.1152/ajpheart.01267.2010

M3 - Article

VL - 300

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 6

ER -