Integrated Electron Microscopy: Super-Duper Resolution

Jacomine Krijnse Locker, Sandra L. Schmid

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Since its inception, electron microscopy (EM) has revealed that cellular membranes are organized into structurally distinct subdomains, created by localized protein and lipid assemblies to perform specific complex cellular functions. Caveolae are membrane subdomains that function as signaling platforms, endocytic carriers, sensors of membrane tension, and mechanical stress, as well as in lipid homeostasis. They were first discovered almost 60 years ago by pioneering electron microscopists. While new and exciting developments in SUPER-resolution fluorescent light microscopy facilitate studies of the spatial organization of fluorescently labeled protein components, these techniques cannot reveal the underlying cellular structures. Thus, equally exciting are developments in EM: genetically encoded probes for protein localization at sub-10 nm resolution, more powerful instruments that allow imaging of larger cell volumes, and computational methods for reconstructing three-dimensional images. Used in combination, as done by Ludwig<etal>et al</etal>. in the current issue of PLOS Biology, these tools reveal high-resolution insights into the composition and organization of the caveolae coat and the formation of these specialized structures. Together, these advances are contributing to a resurgence in EM.

Original languageEnglish (US)
Article numbere1001639
JournalPLoS biology
Volume11
Issue number8
DOIs
StatePublished - Aug 2013

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Integrated Electron Microscopy: Super-Duper Resolution'. Together they form a unique fingerprint.

Cite this