TY - JOUR
T1 - Interleukin-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis in a murine model
AU - Kuroyanagi, Gen
AU - Adapala, Naga Suresh
AU - Yamaguchi, Ryosuke
AU - Kamiya, Nobuhiro
AU - Deng, Zhuo
AU - Aruwajoye, Olumide
AU - Kutschke, Michael
AU - Chen, Elena
AU - Jo, Chanhee
AU - Ren, Yinshi
AU - Kim, Harry K.W.
N1 - Funding Information:
The authors are very grateful to Amanda McLerran for her technical assistance. We also thank Reuel Cornelia and Richard Banlaygas for histological preparation. This work was supported by funding from Texas Scottish Rite Hospital for Children (H.K.) and by JPJS KAKENHI (N.K. 15K08437 , G.K. 17U07009 ).
Publisher Copyright:
© 2018
PY - 2018/11
Y1 - 2018/11
N2 - Legg-Calvé-Perthes disease (LCPD) is a childhood form of ischemic osteonecrosis of the femoral head which can produce a permanent femoral head deformity and early osteoarthritis. The femoral head deformity results from increased bone resorption and decreased bone formation during repair and remodeling of the necrotic femoral head. A recent study showed that a pro-inflammatory cytokine, interleukin-6 (IL-6), is significantly elevated in the synovial fluid of patients with LCPD. We hypothesized that IL-6 elevation decreases bone formation during the repair process following ischemic osteonecrosis and that IL-6 depletion will increase new bone formation. To test this hypothesis, we surgically induced ischemic osteonecrosis in the wild-type (n = 29) and IL-6 knockout (KO) mice (n = 25). The animals were assessed at 48 h, 2 weeks and 4 weeks following the induction of ischemic osteonecrosis using histologic, histomorphometric and micro-CT methods. IL-6 immunohistochemistry showed high expression of IL-6 in the osteonecrotic side of the wild-type mice at 48 h and 4 weeks following ischemic osteonecrosis, but not in the IL-6 KO mice. We also confirmed an undetectable level of IL-6 expression in the primary osteoblasts of the IL-6 KO mice compared to the readily detectable level in the wild-type mice. Furthermore, we confirmed that IL-6 deletion did not affect the extent of bone necrosis in the IL-6 KO mice compared to the wild-type mice by performing histologic and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assessments at 2 weeks following the induction of ischemia. Both groups had the same extent of ischemic osteonecrosis and absence of repair at 2 weeks. At 4 weeks, the necrotic epiphyses showed a significant increase in the extent of revascularization in the IL-6 KO mice compared to the wild-type mice (p = 0.001). In addition, a significantly greater recovery of the hematopoietic bone marrow was observed in the osteonecrotic side of the IL-6 KO mice compared to the wild-type mice (p < 0.01). Vascular endothelial growth factor (VEGF) immunohistochemistry showed regionally increased staining in the areas of repair in the osteonecrosis side of IL-6 KO mice compared to the wild-type mice at 4 weeks following ischemic osteonecrosis. Micro-CT assessment of the wild-type mice at 4 weeks showed a significant decrease in the percent bone volume (p < 0.01) in the osteonecrotic side compared to the control side. In contrast, IL-6 KO mice showed significantly increased bone volume in the osteonecrotic side compared to the osteonecrotic side of WT mice (p < 0.001). No significant difference in the bone volume percentage was found between the control side of the wild-type and the IL-6 KO mice. Histomorphometric analysis at 4 weeks revealed increased osteoblast number/bone surface (p < 0.001), bone formation rate (BFR) (p = 0.0001), and mineral apposition rate (MAR) (p < 0.0001) in the osteonecrotic side of the IL-6 KO mice compared to the wild-type mice. The number of osteoclast/bone surface was also increased in the IL-6 KO mice compared to the wild-type mice (p < 0.0001). No significant difference was observed between the control side of the wild-type and IL-6 KO mice with regards to the number of osteoblast or osteoclast/bone surface, BFR, and MAR. We next obtained primary osteoblasts from IL-6 KO mice and showed they expressed a significantly higher level of RANKL/OPG than wild-type mice (p = 0.001) in hypoxia culture condition. Taken together, the findings indicate that IL-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis. This study provides new evidence that therapeutic strategies to block IL-6 may be beneficial for bone healing following ischemic osteonecrosis.
AB - Legg-Calvé-Perthes disease (LCPD) is a childhood form of ischemic osteonecrosis of the femoral head which can produce a permanent femoral head deformity and early osteoarthritis. The femoral head deformity results from increased bone resorption and decreased bone formation during repair and remodeling of the necrotic femoral head. A recent study showed that a pro-inflammatory cytokine, interleukin-6 (IL-6), is significantly elevated in the synovial fluid of patients with LCPD. We hypothesized that IL-6 elevation decreases bone formation during the repair process following ischemic osteonecrosis and that IL-6 depletion will increase new bone formation. To test this hypothesis, we surgically induced ischemic osteonecrosis in the wild-type (n = 29) and IL-6 knockout (KO) mice (n = 25). The animals were assessed at 48 h, 2 weeks and 4 weeks following the induction of ischemic osteonecrosis using histologic, histomorphometric and micro-CT methods. IL-6 immunohistochemistry showed high expression of IL-6 in the osteonecrotic side of the wild-type mice at 48 h and 4 weeks following ischemic osteonecrosis, but not in the IL-6 KO mice. We also confirmed an undetectable level of IL-6 expression in the primary osteoblasts of the IL-6 KO mice compared to the readily detectable level in the wild-type mice. Furthermore, we confirmed that IL-6 deletion did not affect the extent of bone necrosis in the IL-6 KO mice compared to the wild-type mice by performing histologic and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assessments at 2 weeks following the induction of ischemia. Both groups had the same extent of ischemic osteonecrosis and absence of repair at 2 weeks. At 4 weeks, the necrotic epiphyses showed a significant increase in the extent of revascularization in the IL-6 KO mice compared to the wild-type mice (p = 0.001). In addition, a significantly greater recovery of the hematopoietic bone marrow was observed in the osteonecrotic side of the IL-6 KO mice compared to the wild-type mice (p < 0.01). Vascular endothelial growth factor (VEGF) immunohistochemistry showed regionally increased staining in the areas of repair in the osteonecrosis side of IL-6 KO mice compared to the wild-type mice at 4 weeks following ischemic osteonecrosis. Micro-CT assessment of the wild-type mice at 4 weeks showed a significant decrease in the percent bone volume (p < 0.01) in the osteonecrotic side compared to the control side. In contrast, IL-6 KO mice showed significantly increased bone volume in the osteonecrotic side compared to the osteonecrotic side of WT mice (p < 0.001). No significant difference in the bone volume percentage was found between the control side of the wild-type and the IL-6 KO mice. Histomorphometric analysis at 4 weeks revealed increased osteoblast number/bone surface (p < 0.001), bone formation rate (BFR) (p = 0.0001), and mineral apposition rate (MAR) (p < 0.0001) in the osteonecrotic side of the IL-6 KO mice compared to the wild-type mice. The number of osteoclast/bone surface was also increased in the IL-6 KO mice compared to the wild-type mice (p < 0.0001). No significant difference was observed between the control side of the wild-type and IL-6 KO mice with regards to the number of osteoblast or osteoclast/bone surface, BFR, and MAR. We next obtained primary osteoblasts from IL-6 KO mice and showed they expressed a significantly higher level of RANKL/OPG than wild-type mice (p = 0.001) in hypoxia culture condition. Taken together, the findings indicate that IL-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis. This study provides new evidence that therapeutic strategies to block IL-6 may be beneficial for bone healing following ischemic osteonecrosis.
KW - Avascular necrosis
KW - Bone formation
KW - IL-6 knockout mouse
KW - Interleukin-6
KW - Ischemic osteonecrosis
KW - Legg-Calvé-Perthes disease
UR - http://www.scopus.com/inward/record.url?scp=85051955244&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051955244&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2018.08.011
DO - 10.1016/j.bone.2018.08.011
M3 - Article
C2 - 30125727
AN - SCOPUS:85051955244
VL - 116
SP - 221
EP - 231
JO - Bone
JF - Bone
SN - 8756-3282
ER -