Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency

Jonghan Kim, Yuan Li, Peter D. Buckett, Mark Böhlke, Khristy J. Thompson, Masaya Takahashi, Timothy J. Maher, Marianne Wessling-Resnick

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D1 (D1R) levels were reduced and dopamine receptor D2 (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.

Original languageEnglish (US)
Article numbere33533
JournalPloS one
Volume7
Issue number3
DOIs
StatePublished - Mar 30 2012

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency'. Together they form a unique fingerprint.

Cite this