Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding rna from cellular RNA decay pathways

Brooke B. Sahin, Denish Patel, Nicholas K. Conrad

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless β-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.

Original languageEnglish (US)
Article numbere1000799
JournalPLoS Pathogens
Volume6
Issue number3
DOIs
StatePublished - Mar 2010

Fingerprint

Nuclear RNA
Human Herpesvirus 8
Untranslated RNA
RNA Stability
RNA
Proteins
Quality Control
Messenger RNA
Trans-Activators
Globins
Chromatin Immunoprecipitation
In Situ Hybridization
Alleles
Gene Expression

ASJC Scopus subject areas

  • Microbiology
  • Parasitology
  • Virology
  • Immunology
  • Genetics
  • Molecular Biology

Cite this

Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding rna from cellular RNA decay pathways. / Sahin, Brooke B.; Patel, Denish; Conrad, Nicholas K.

In: PLoS Pathogens, Vol. 6, No. 3, e1000799, 03.2010.

Research output: Contribution to journalArticle

@article{fea89d8fd6b4472c901d76e4f033b81a,
title = "Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding rna from cellular RNA decay pathways",
abstract = "The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless β-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.",
author = "Sahin, {Brooke B.} and Denish Patel and Conrad, {Nicholas K.}",
year = "2010",
month = "3",
doi = "10.1371/journal.ppat.1000799",
language = "English (US)",
volume = "6",
journal = "PLoS Pathogens",
issn = "1553-7366",
publisher = "Public Library of Science",
number = "3",

}

TY - JOUR

T1 - Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding rna from cellular RNA decay pathways

AU - Sahin, Brooke B.

AU - Patel, Denish

AU - Conrad, Nicholas K.

PY - 2010/3

Y1 - 2010/3

N2 - The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless β-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.

AB - The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless β-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.

UR - http://www.scopus.com/inward/record.url?scp=77950439778&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950439778&partnerID=8YFLogxK

U2 - 10.1371/journal.ppat.1000799

DO - 10.1371/journal.ppat.1000799

M3 - Article

C2 - 20221435

AN - SCOPUS:77950439778

VL - 6

JO - PLoS Pathogens

JF - PLoS Pathogens

SN - 1553-7366

IS - 3

M1 - e1000799

ER -