KRASQ61H preferentially signals through MAPK in a RAF dimer-dependent manner in non-small cell lung cancer

Zhi Wei Zhou, Chiara Ambrogio, Asim K. Bera, Qing Li, Xing Xiao Li, Lianbo Li, Jieun Son, Sudershan Gondi, Jiaqi Li, Emily Campbell, Hua Jin, Jeffrey J. Okoro, Cheng Xiong Xu, Pasi A. Janne, Kenneth D. Westover

Research output: Contribution to journalArticlepeer-review

Abstract

Assembly of RAS molecules into complexes at the cell membrane is critical for RAS signaling. We previously showed that oncogenic KRAS codon 61 mutations increase its affinity for RAF, raising the possibility that KRASQ61H, the most common KRAS mutation at codon 61, upregulates RAS signaling through mechanisms at the level of RAS assemblies. We show here that KRASQ61H exhibits preferential binding to RAF relative to PI3K in cells, leading to enhanced MAPK signaling in in vitro models and human NSCLC tumors. X-ray crystallography of KRASQ61H:GTP revealed that a hyperdynamic switch 2 allows for a more stable interaction with switch 1, suggesting that enhanced RAF activity arises from a combination of absent intrinsic GTP hydrolysis activity and increased affinity for RAF. Disruption of KRASQ61H assemblies by the RAS oligomer-disrupting D154Q mutation impaired RAF dimerization and altered MAPK signaling but had little effect on PI3K signaling. However, KRASQ61H oligomers but not KRASG12D oligomers were disrupted by RAF mutations that disrupt RAF-RAF interactions. KRASQ61H cells show enhanced sensitivity to RAF and MEK inhibitors individually, whereas combined treatment elicited synergistic growth inhibition. Furthermore, KRASQ61H tumors in mice exhibited high vulnerability to MEK inhibitor, consistent with cooperativity between KRASQ61H and RAF oligomerization and dependence on MAPK signaling. These findings support the notion that KRASQ61H and functionally similar mutations may serve as predictive biomarkers for targeted therapies against the MAPK pathway.

Original languageEnglish (US)
Pages (from-to)3719-3731
Number of pages13
JournalCancer research
Volume80
Issue number17
DOIs
StatePublished - Sep 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'KRAS<sup>Q61H</sup> preferentially signals through MAPK in a RAF dimer-dependent manner in non-small cell lung cancer'. Together they form a unique fingerprint.

Cite this