Laser lithotripsy and cyanide

Nicol S. Corbin, Joel M H Teichman, Thuy Nguyen, Randolph D. Glickman, Linda Rihbany, Margaret S Pearle, Jay T. Bishoff

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Background and Purpose: Holmium:YAG lithotripsy of uric acid calculi produces cyanide. The laser and stone parameters required to produce cyanide are poorly defined. In this study, we tested time hypotheses that cyanide production: (1) varies with holmium:YAG power settings; (2) varies among holmium:YAG, pulsed-dye, and alexandrite lasers; and (3) occurs during holmium:YAG lithotripsy of all purine calculi. Materials and Methods: Holmium:YAG lithotripsy of uric acid calculi was done using various optical fiber diameters (272-940 μm) and pulse energies (0.5-1.5 J) for constant irradiation (0.25 kJ). Fragmentation and cyanide were quantified. Cyanide values were divided by fragmentation values, and fragment sizes were characterized. To test the second hypothesis, uric acid calculi were irradiated with Ho:YAG, pulsed-dye, and alexandrite lasers. Fragmentation and cyanide were measured, and cyanide per fragmentation was calculated. Fragment sizes were characterized. Finally, Ho:YAG lithotripsy (0.25 kJ) of purine and nonpurine calculi was done, and cyanide production was measured. Results: Fragmentation increased as pulse energy increased for the 550- and 940-μm optical fibers (P < 0.05). Cyanide increased as pulse energy increased for all optical fibers (P < 0.002). Cyanide per fragmentation increased as pulse energy increased for the 272-μm optical fiber (P = 0.03). Fragment size increased as pulse energy increased for the 272-μm, 550-μm, and 940-μm optical fibers (P < 0.001). The mean cyanide production from 0.25 kJ of optical energy was Ho:YAG laser 106 μg, pulsed-dye 55 μm, and alexandrite 1 μg (P < 0.001). The mean cyanide normalized for fragmentation (μg/mg) was 1.18, 0.85, and 0.02, respectively (P < 0.001). The mean fragment size was 0.6, 1.1, and 1.9 mm, respectively (P < 0.001). After 0.25 kJ, the mean amount or cyanide produced was monosodium urate stones 85 μg, uric acid 78 μg, xanthine 17 μg, ammonium acid urate 16 μg, calcium phosphate 8 μg, cystine 7 μg, and struvite 4 μg (P < 0.001). Conclusions: Cyanide production varies with Ho:YAG pulse energy. To minimize cyanide and fragment size, Ho:YAG lasertripsy is best done at a pulse energy ≤ 1.0 J. Cyanide production from laser lithotripsy of uric acid calculi varies among Ho:YAG, pulsed-dye, and alexandrite lasers and is related to pulse duration. Cyanide is produced by Ho:YAG lasertripsy of all purine calculi.

Original languageEnglish (US)
Pages (from-to)169-173
Number of pages5
JournalJournal of Endourology
Volume14
Issue number2
StatePublished - 2000

Fingerprint

Laser Lithotripsy
Cyanides
Calculi
Holmium
Uric Acid
Optical Fibers
Lithotripsy
Solid-State Lasers
Dye Lasers

ASJC Scopus subject areas

  • Urology

Cite this

Corbin, N. S., Teichman, J. M. H., Nguyen, T., Glickman, R. D., Rihbany, L., Pearle, M. S., & Bishoff, J. T. (2000). Laser lithotripsy and cyanide. Journal of Endourology, 14(2), 169-173.

Laser lithotripsy and cyanide. / Corbin, Nicol S.; Teichman, Joel M H; Nguyen, Thuy; Glickman, Randolph D.; Rihbany, Linda; Pearle, Margaret S; Bishoff, Jay T.

In: Journal of Endourology, Vol. 14, No. 2, 2000, p. 169-173.

Research output: Contribution to journalArticle

Corbin, NS, Teichman, JMH, Nguyen, T, Glickman, RD, Rihbany, L, Pearle, MS & Bishoff, JT 2000, 'Laser lithotripsy and cyanide', Journal of Endourology, vol. 14, no. 2, pp. 169-173.
Corbin NS, Teichman JMH, Nguyen T, Glickman RD, Rihbany L, Pearle MS et al. Laser lithotripsy and cyanide. Journal of Endourology. 2000;14(2):169-173.
Corbin, Nicol S. ; Teichman, Joel M H ; Nguyen, Thuy ; Glickman, Randolph D. ; Rihbany, Linda ; Pearle, Margaret S ; Bishoff, Jay T. / Laser lithotripsy and cyanide. In: Journal of Endourology. 2000 ; Vol. 14, No. 2. pp. 169-173.
@article{5931930ef09d442389433abf8c53ee4e,
title = "Laser lithotripsy and cyanide",
abstract = "Background and Purpose: Holmium:YAG lithotripsy of uric acid calculi produces cyanide. The laser and stone parameters required to produce cyanide are poorly defined. In this study, we tested time hypotheses that cyanide production: (1) varies with holmium:YAG power settings; (2) varies among holmium:YAG, pulsed-dye, and alexandrite lasers; and (3) occurs during holmium:YAG lithotripsy of all purine calculi. Materials and Methods: Holmium:YAG lithotripsy of uric acid calculi was done using various optical fiber diameters (272-940 μm) and pulse energies (0.5-1.5 J) for constant irradiation (0.25 kJ). Fragmentation and cyanide were quantified. Cyanide values were divided by fragmentation values, and fragment sizes were characterized. To test the second hypothesis, uric acid calculi were irradiated with Ho:YAG, pulsed-dye, and alexandrite lasers. Fragmentation and cyanide were measured, and cyanide per fragmentation was calculated. Fragment sizes were characterized. Finally, Ho:YAG lithotripsy (0.25 kJ) of purine and nonpurine calculi was done, and cyanide production was measured. Results: Fragmentation increased as pulse energy increased for the 550- and 940-μm optical fibers (P < 0.05). Cyanide increased as pulse energy increased for all optical fibers (P < 0.002). Cyanide per fragmentation increased as pulse energy increased for the 272-μm optical fiber (P = 0.03). Fragment size increased as pulse energy increased for the 272-μm, 550-μm, and 940-μm optical fibers (P < 0.001). The mean cyanide production from 0.25 kJ of optical energy was Ho:YAG laser 106 μg, pulsed-dye 55 μm, and alexandrite 1 μg (P < 0.001). The mean cyanide normalized for fragmentation (μg/mg) was 1.18, 0.85, and 0.02, respectively (P < 0.001). The mean fragment size was 0.6, 1.1, and 1.9 mm, respectively (P < 0.001). After 0.25 kJ, the mean amount or cyanide produced was monosodium urate stones 85 μg, uric acid 78 μg, xanthine 17 μg, ammonium acid urate 16 μg, calcium phosphate 8 μg, cystine 7 μg, and struvite 4 μg (P < 0.001). Conclusions: Cyanide production varies with Ho:YAG pulse energy. To minimize cyanide and fragment size, Ho:YAG lasertripsy is best done at a pulse energy ≤ 1.0 J. Cyanide production from laser lithotripsy of uric acid calculi varies among Ho:YAG, pulsed-dye, and alexandrite lasers and is related to pulse duration. Cyanide is produced by Ho:YAG lasertripsy of all purine calculi.",
author = "Corbin, {Nicol S.} and Teichman, {Joel M H} and Thuy Nguyen and Glickman, {Randolph D.} and Linda Rihbany and Pearle, {Margaret S} and Bishoff, {Jay T.}",
year = "2000",
language = "English (US)",
volume = "14",
pages = "169--173",
journal = "Journal of Endourology",
issn = "0892-7790",
publisher = "Mary Ann Liebert Inc.",
number = "2",

}

TY - JOUR

T1 - Laser lithotripsy and cyanide

AU - Corbin, Nicol S.

AU - Teichman, Joel M H

AU - Nguyen, Thuy

AU - Glickman, Randolph D.

AU - Rihbany, Linda

AU - Pearle, Margaret S

AU - Bishoff, Jay T.

PY - 2000

Y1 - 2000

N2 - Background and Purpose: Holmium:YAG lithotripsy of uric acid calculi produces cyanide. The laser and stone parameters required to produce cyanide are poorly defined. In this study, we tested time hypotheses that cyanide production: (1) varies with holmium:YAG power settings; (2) varies among holmium:YAG, pulsed-dye, and alexandrite lasers; and (3) occurs during holmium:YAG lithotripsy of all purine calculi. Materials and Methods: Holmium:YAG lithotripsy of uric acid calculi was done using various optical fiber diameters (272-940 μm) and pulse energies (0.5-1.5 J) for constant irradiation (0.25 kJ). Fragmentation and cyanide were quantified. Cyanide values were divided by fragmentation values, and fragment sizes were characterized. To test the second hypothesis, uric acid calculi were irradiated with Ho:YAG, pulsed-dye, and alexandrite lasers. Fragmentation and cyanide were measured, and cyanide per fragmentation was calculated. Fragment sizes were characterized. Finally, Ho:YAG lithotripsy (0.25 kJ) of purine and nonpurine calculi was done, and cyanide production was measured. Results: Fragmentation increased as pulse energy increased for the 550- and 940-μm optical fibers (P < 0.05). Cyanide increased as pulse energy increased for all optical fibers (P < 0.002). Cyanide per fragmentation increased as pulse energy increased for the 272-μm optical fiber (P = 0.03). Fragment size increased as pulse energy increased for the 272-μm, 550-μm, and 940-μm optical fibers (P < 0.001). The mean cyanide production from 0.25 kJ of optical energy was Ho:YAG laser 106 μg, pulsed-dye 55 μm, and alexandrite 1 μg (P < 0.001). The mean cyanide normalized for fragmentation (μg/mg) was 1.18, 0.85, and 0.02, respectively (P < 0.001). The mean fragment size was 0.6, 1.1, and 1.9 mm, respectively (P < 0.001). After 0.25 kJ, the mean amount or cyanide produced was monosodium urate stones 85 μg, uric acid 78 μg, xanthine 17 μg, ammonium acid urate 16 μg, calcium phosphate 8 μg, cystine 7 μg, and struvite 4 μg (P < 0.001). Conclusions: Cyanide production varies with Ho:YAG pulse energy. To minimize cyanide and fragment size, Ho:YAG lasertripsy is best done at a pulse energy ≤ 1.0 J. Cyanide production from laser lithotripsy of uric acid calculi varies among Ho:YAG, pulsed-dye, and alexandrite lasers and is related to pulse duration. Cyanide is produced by Ho:YAG lasertripsy of all purine calculi.

AB - Background and Purpose: Holmium:YAG lithotripsy of uric acid calculi produces cyanide. The laser and stone parameters required to produce cyanide are poorly defined. In this study, we tested time hypotheses that cyanide production: (1) varies with holmium:YAG power settings; (2) varies among holmium:YAG, pulsed-dye, and alexandrite lasers; and (3) occurs during holmium:YAG lithotripsy of all purine calculi. Materials and Methods: Holmium:YAG lithotripsy of uric acid calculi was done using various optical fiber diameters (272-940 μm) and pulse energies (0.5-1.5 J) for constant irradiation (0.25 kJ). Fragmentation and cyanide were quantified. Cyanide values were divided by fragmentation values, and fragment sizes were characterized. To test the second hypothesis, uric acid calculi were irradiated with Ho:YAG, pulsed-dye, and alexandrite lasers. Fragmentation and cyanide were measured, and cyanide per fragmentation was calculated. Fragment sizes were characterized. Finally, Ho:YAG lithotripsy (0.25 kJ) of purine and nonpurine calculi was done, and cyanide production was measured. Results: Fragmentation increased as pulse energy increased for the 550- and 940-μm optical fibers (P < 0.05). Cyanide increased as pulse energy increased for all optical fibers (P < 0.002). Cyanide per fragmentation increased as pulse energy increased for the 272-μm optical fiber (P = 0.03). Fragment size increased as pulse energy increased for the 272-μm, 550-μm, and 940-μm optical fibers (P < 0.001). The mean cyanide production from 0.25 kJ of optical energy was Ho:YAG laser 106 μg, pulsed-dye 55 μm, and alexandrite 1 μg (P < 0.001). The mean cyanide normalized for fragmentation (μg/mg) was 1.18, 0.85, and 0.02, respectively (P < 0.001). The mean fragment size was 0.6, 1.1, and 1.9 mm, respectively (P < 0.001). After 0.25 kJ, the mean amount or cyanide produced was monosodium urate stones 85 μg, uric acid 78 μg, xanthine 17 μg, ammonium acid urate 16 μg, calcium phosphate 8 μg, cystine 7 μg, and struvite 4 μg (P < 0.001). Conclusions: Cyanide production varies with Ho:YAG pulse energy. To minimize cyanide and fragment size, Ho:YAG lasertripsy is best done at a pulse energy ≤ 1.0 J. Cyanide production from laser lithotripsy of uric acid calculi varies among Ho:YAG, pulsed-dye, and alexandrite lasers and is related to pulse duration. Cyanide is produced by Ho:YAG lasertripsy of all purine calculi.

UR - http://www.scopus.com/inward/record.url?scp=0034116592&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034116592&partnerID=8YFLogxK

M3 - Article

C2 - 10772510

AN - SCOPUS:0034116592

VL - 14

SP - 169

EP - 173

JO - Journal of Endourology

JF - Journal of Endourology

SN - 0892-7790

IS - 2

ER -