Learning-related synaptic growth mediated by internalization of Aplysia cell adhesion molecule is controlled by membrane phosphatidylinositol 4,5-bisphosphate synthetic pathway

Seung Hee Lee, Jaehoon Shim, Sun Lim Choi, Nuribalhae Lee, Chang Hoon Lee, Craig H. Bailey, Eric R. Kandel, Deok Jin Jang, Bong Kiun Kaang

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Long-term facilitation in Aplysia is accompanied by the growth of new synaptic connections between the sensory and motor neurons of the gill-withdrawal reflex. One of the initial steps leading to the growth of these synapses is the internalization, induced by 5-HT, of the transmembrane isoform of Aplysia cell-adhesion molecule (TM-apCAM) from the plasma membrane of sensory neurons (Bailey et al., 1992). However, the mechanisms that govern the internalization of TM-apCAM and how this internalization is coupled to the molecular events that initiate the structural changes are not fully understood. Here, we report that the synthesis of membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], which is known to be mediated by a signaling cascade through Aplysia Sec7 protein (ApSec7) and phosphatidylinositol-4-phosphate 5-kinase type Iα (PIP5KIα) is required for both the internalization of TM-apCAM and the initiation of synaptic growth during 5-HT-induced long-term facilitation. Pharmacological blockade of PI(4,5)P2 synthesis by the application of the inhibitor phenylarsine oxide blocked the internalization of apCAM. Furthermore, perturbation of the endogenous activation of ApSec7 and its downstream target PIP5KIα also blocked 5-HT-mediated internalization of TM-apCAM and synaptic growth. Finally, long-term facilitation was specifically impaired by blocking the ApSec7 signaling pathway at sensory-to-motor neuron synapses. These data indicate that the ApSec7/PIP5KIα signaling pathway is actively recruited during learning-related 5-HT signaling and acts as a key regulator of apCAM internalization associated with the formation of new synaptic connections during long-term facilitation.

Original languageEnglish (US)
Pages (from-to)16296-16305
Number of pages10
JournalJournal of Neuroscience
Volume32
Issue number46
DOIs
StatePublished - Nov 14 2012
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Learning-related synaptic growth mediated by internalization of Aplysia cell adhesion molecule is controlled by membrane phosphatidylinositol 4,5-bisphosphate synthetic pathway'. Together they form a unique fingerprint.

Cite this