Lipid-dependent gating of a voltage-gated potassium channel

Hui Zheng, Weiran Liu, Lingyan Y. Anderson, Qiu Xing Jiang

Research output: Contribution to journalArticle

63 Scopus citations

Abstract

Recent studies hypothesized that phospholipids stabilize two voltage-sensing arginine residues of certain voltage-gated potassium channels in activated conformations. It remains unclear how lipids directly affect these channels. Here, by examining the conformations of the KvAP in different lipids, we showed that without voltage change, the voltage-sensor domains switched from the activated to the resting state when their surrounding lipids were changed from phospholipids to nonphospholipids. Such lipid-determined conformational change was coupled to the ion-conducting pore, suggesting that parallel to voltage gating, the channel is gated by its annular lipids. Our measurements recognized that the energetic cost of lipid-dependent gating approaches that of voltage gating, but kinetically it appears much slower. Our data support that a channel and its surrounding lipids together constitute a functional unit, and natural nonphospholipids such as cholesterol should exert strong effects on voltage-gated channels. Our first observation of lipid-dependent gating may have general implications to other membrane proteins.

Original languageEnglish (US)
Article number250
JournalNature communications
Volume2
Issue number1
DOIs
StatePublished - Apr 5 2011

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Lipid-dependent gating of a voltage-gated potassium channel'. Together they form a unique fingerprint.

  • Cite this

    Zheng, H., Liu, W., Anderson, L. Y., & Jiang, Q. X. (2011). Lipid-dependent gating of a voltage-gated potassium channel. Nature communications, 2(1), [250]. https://doi.org/10.1038/ncomms1254