Low density lipoprotein receptors in bovine adrenal cortex. I. Receptor-mediated uptake of low density lipoprotein and utilization of its cholesterol for steroid synthesis in cultured adrenocortical cells

P. T. Kovanen, J. R. Faust, M. S. Brown, J. L. Goldstein

Research output: Contribution to journalArticle

116 Citations (Scopus)

Abstract

Functioning bovine adrenocorticotical cells in monolayer culture were shown to obtain cholesterol for steroid synthesis from plasma low density lipoprotein (LDL). When grown in medium devoid of lipoproteins, the cells developed a minimal enhancement in steroid secretion in response to ACTH or cholera toxin. However, when LDL was available, steroid secretion was stimulated 4- to 9-fold. To determine the mechanism for this effect, we used LDL in which the protein component was labeled with 125I and the cholesteryl ester component was labeled with [3H]cholesteryl linoleate. These studies demonstrated that the cells derived cholesterol from LDL by binding the lipoprotein at a high affinity receptor site, internalizing it, and hydrolyzing its cholesteryl esters within lysosomes. The resultant free cholesterol was used for steroid synthesis and also acted to suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis within the cell. LDL receptor activity was enhanced several-fold by treatment of the cells with ACTH or cholera toxin. High density lipoprotein, which did not bind to the LDL receptor, was not degraded with high affinity by the cells and did not support steroid synthesis. The current data suggest that the bovine adrenal cortex can obtain cholesterol for steroid hormone secretion from circulating LDL by means of a high affinity LDL receptor pathway. In a subsequent paper in this series, a similar high affinity LDL-binding site is demonstrated in membranes prepared from fresh bovine adrenocortical tissue.

Original languageEnglish (US)
Pages (from-to)599-609
Number of pages11
JournalEndocrinology
Volume104
Issue number3
StatePublished - 1979

Fingerprint

LDL Receptors
Adrenal Cortex
LDL Lipoproteins
Cultured Cells
Steroids
Cholesterol
Cholesterol Esters
Cholera Toxin
Adrenocorticotropic Hormone
Lipoproteins
HDL Lipoproteins
Lysosomes
LDL Cholesterol
Binding Sites
Hormones
Membranes
Proteins

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism

Cite this

@article{2dc1e75687f144308703651d583101c7,
title = "Low density lipoprotein receptors in bovine adrenal cortex. I. Receptor-mediated uptake of low density lipoprotein and utilization of its cholesterol for steroid synthesis in cultured adrenocortical cells",
abstract = "Functioning bovine adrenocorticotical cells in monolayer culture were shown to obtain cholesterol for steroid synthesis from plasma low density lipoprotein (LDL). When grown in medium devoid of lipoproteins, the cells developed a minimal enhancement in steroid secretion in response to ACTH or cholera toxin. However, when LDL was available, steroid secretion was stimulated 4- to 9-fold. To determine the mechanism for this effect, we used LDL in which the protein component was labeled with 125I and the cholesteryl ester component was labeled with [3H]cholesteryl linoleate. These studies demonstrated that the cells derived cholesterol from LDL by binding the lipoprotein at a high affinity receptor site, internalizing it, and hydrolyzing its cholesteryl esters within lysosomes. The resultant free cholesterol was used for steroid synthesis and also acted to suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis within the cell. LDL receptor activity was enhanced several-fold by treatment of the cells with ACTH or cholera toxin. High density lipoprotein, which did not bind to the LDL receptor, was not degraded with high affinity by the cells and did not support steroid synthesis. The current data suggest that the bovine adrenal cortex can obtain cholesterol for steroid hormone secretion from circulating LDL by means of a high affinity LDL receptor pathway. In a subsequent paper in this series, a similar high affinity LDL-binding site is demonstrated in membranes prepared from fresh bovine adrenocortical tissue.",
author = "Kovanen, {P. T.} and Faust, {J. R.} and Brown, {M. S.} and Goldstein, {J. L.}",
year = "1979",
language = "English (US)",
volume = "104",
pages = "599--609",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "3",

}

TY - JOUR

T1 - Low density lipoprotein receptors in bovine adrenal cortex. I. Receptor-mediated uptake of low density lipoprotein and utilization of its cholesterol for steroid synthesis in cultured adrenocortical cells

AU - Kovanen, P. T.

AU - Faust, J. R.

AU - Brown, M. S.

AU - Goldstein, J. L.

PY - 1979

Y1 - 1979

N2 - Functioning bovine adrenocorticotical cells in monolayer culture were shown to obtain cholesterol for steroid synthesis from plasma low density lipoprotein (LDL). When grown in medium devoid of lipoproteins, the cells developed a minimal enhancement in steroid secretion in response to ACTH or cholera toxin. However, when LDL was available, steroid secretion was stimulated 4- to 9-fold. To determine the mechanism for this effect, we used LDL in which the protein component was labeled with 125I and the cholesteryl ester component was labeled with [3H]cholesteryl linoleate. These studies demonstrated that the cells derived cholesterol from LDL by binding the lipoprotein at a high affinity receptor site, internalizing it, and hydrolyzing its cholesteryl esters within lysosomes. The resultant free cholesterol was used for steroid synthesis and also acted to suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis within the cell. LDL receptor activity was enhanced several-fold by treatment of the cells with ACTH or cholera toxin. High density lipoprotein, which did not bind to the LDL receptor, was not degraded with high affinity by the cells and did not support steroid synthesis. The current data suggest that the bovine adrenal cortex can obtain cholesterol for steroid hormone secretion from circulating LDL by means of a high affinity LDL receptor pathway. In a subsequent paper in this series, a similar high affinity LDL-binding site is demonstrated in membranes prepared from fresh bovine adrenocortical tissue.

AB - Functioning bovine adrenocorticotical cells in monolayer culture were shown to obtain cholesterol for steroid synthesis from plasma low density lipoprotein (LDL). When grown in medium devoid of lipoproteins, the cells developed a minimal enhancement in steroid secretion in response to ACTH or cholera toxin. However, when LDL was available, steroid secretion was stimulated 4- to 9-fold. To determine the mechanism for this effect, we used LDL in which the protein component was labeled with 125I and the cholesteryl ester component was labeled with [3H]cholesteryl linoleate. These studies demonstrated that the cells derived cholesterol from LDL by binding the lipoprotein at a high affinity receptor site, internalizing it, and hydrolyzing its cholesteryl esters within lysosomes. The resultant free cholesterol was used for steroid synthesis and also acted to suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis within the cell. LDL receptor activity was enhanced several-fold by treatment of the cells with ACTH or cholera toxin. High density lipoprotein, which did not bind to the LDL receptor, was not degraded with high affinity by the cells and did not support steroid synthesis. The current data suggest that the bovine adrenal cortex can obtain cholesterol for steroid hormone secretion from circulating LDL by means of a high affinity LDL receptor pathway. In a subsequent paper in this series, a similar high affinity LDL-binding site is demonstrated in membranes prepared from fresh bovine adrenocortical tissue.

UR - http://www.scopus.com/inward/record.url?scp=0018375919&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0018375919&partnerID=8YFLogxK

M3 - Article

C2 - 220014

AN - SCOPUS:0018375919

VL - 104

SP - 599

EP - 609

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 3

ER -