Low-dose computed tomography image reconstruction via structure tensor total variation regularization

Junfeng Wu, Xuanqin Mou, Yongyi Shi, Ti Bai, Yang Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The X-ray computer tomography (CT) scanner has been extensively used in medical diagnosis. How to reduce radiation dose exposure while maintain high image reconstruction quality has become a major concern in the CT field. In this paper, we propose a statistical iterative reconstruction framework based on structure tensor total variation regularization for low dose CT imaging. An accelerated proximal forward-backward splitting (APFBS) algorithm is developed to optimize the associated cost function. The experiments on two physical phantoms demonstrate that our proposed algorithm outperforms other existing algorithms such as statistical iterative reconstruction with total variation regularizer and filtered back projection (FBP).

Original languageEnglish (US)
Title of host publicationMedical Imaging 2018
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Guang-Hong Chen, Joseph Y. Lo
PublisherSPIE
ISBN (Electronic)9781510616356
DOIs
StatePublished - 2018
Externally publishedYes
EventMedical Imaging 2018: Physics of Medical Imaging - Houston, United States
Duration: Feb 12 2018Feb 15 2018

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10573
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2018: Physics of Medical Imaging
Country/TerritoryUnited States
CityHouston
Period2/12/182/15/18

Keywords

  • Low dose CT
  • proximal forward-backward splitting
  • structure tensor total variation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Low-dose computed tomography image reconstruction via structure tensor total variation regularization'. Together they form a unique fingerprint.

Cite this