Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis

Hua Lu, Charles S. Fermaintt, Natalia A. Cherepanova, Gilmored Reid, Nan Yan, Mark A. Lehrman

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Oligosaccharyltransferases (OSTs) N-glycosylate proteins by transferring oligosaccharides from lipid-linked oligosaccharides (LLOs) to asparaginyl residues of Asn-Xaa-Ser/Thr acceptor sequons. Mammals have OST isoforms with STT3A or STT3B catalytic subunits for cotranslational or posttranslational N-glycosylation, respectively. OSTs also hydrolyze LLOs, forming free oligosaccharides (fOSs). It has been unclear whether hydrolysis is due to one or both OSTs, segregated from N-glycosylation, and/or regulated. Transfer and hydrolysis were assayed in permeabilized HEK293 kidney and Huh7.5.1 liver cells lacking STT3A or STT3B. Transfer by both STT3A-OST and STT3B-OST with synthetic acceptors was robust. LLO hydrolysis by STT3B-OST was readily detected and surprisingly modulated:Without acceptors, STT3B-OST hydrolyzed Glc3Man9Glc-NAc2-LLO but not Man9GlcNAc2-LLO, yet it hydrolyzed both LLOs with acceptors present. In contrast, LLO hydrolysis by STT3A-OST was negligible. STT3A-OST however may be regulatory, because it suppressed STT3B-OST-dependent fOSs. TREX1, a negative innate immunity factor that diminishes immunogenic fOSs derived from LLOs, acted through STT3B-OST as well. In summary, only STT3BOST hydrolyzes LLOs, depending upon LLO quality and acceptor site occupancy. TREX1 and STT3A suppress STT3B-OST-dependent fOSs. Without strict kinetic limitations during posttranslational N-glycosylation, STT3B-OST can thus moonlight for LLO hydrolysis. In contrast, the STT3A-OST/translocon complex preserves LLOs for temporally fastidious cotranslational N-glycosylation.

Original languageEnglish (US)
Pages (from-to)9557-9562
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume115
Issue number38
DOIs
StatePublished - Sep 18 2018

Fingerprint

Glycosylation
Hydrolysis
Oligosaccharides
lipid-linked oligosaccharides
dolichyl-diphosphooligosaccharide - protein glycotransferase
Innate Immunity
Mammals
Catalytic Domain
Protein Isoforms

Keywords

  • Dolichol
  • Glycosylation
  • Oligosaccharyltransferase
  • STT3A
  • STT3B

ASJC Scopus subject areas

  • General

Cite this

Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. / Lu, Hua; Fermaintt, Charles S.; Cherepanova, Natalia A.; Reid, Gilmored; Yan, Nan; Lehrman, Mark A.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 115, No. 38, 18.09.2018, p. 9557-9562.

Research output: Contribution to journalArticle

@article{7ceccc78181540e99b9099a28cf8c04e,
title = "Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis",
abstract = "Oligosaccharyltransferases (OSTs) N-glycosylate proteins by transferring oligosaccharides from lipid-linked oligosaccharides (LLOs) to asparaginyl residues of Asn-Xaa-Ser/Thr acceptor sequons. Mammals have OST isoforms with STT3A or STT3B catalytic subunits for cotranslational or posttranslational N-glycosylation, respectively. OSTs also hydrolyze LLOs, forming free oligosaccharides (fOSs). It has been unclear whether hydrolysis is due to one or both OSTs, segregated from N-glycosylation, and/or regulated. Transfer and hydrolysis were assayed in permeabilized HEK293 kidney and Huh7.5.1 liver cells lacking STT3A or STT3B. Transfer by both STT3A-OST and STT3B-OST with synthetic acceptors was robust. LLO hydrolysis by STT3B-OST was readily detected and surprisingly modulated:Without acceptors, STT3B-OST hydrolyzed Glc3Man9Glc-NAc2-LLO but not Man9GlcNAc2-LLO, yet it hydrolyzed both LLOs with acceptors present. In contrast, LLO hydrolysis by STT3A-OST was negligible. STT3A-OST however may be regulatory, because it suppressed STT3B-OST-dependent fOSs. TREX1, a negative innate immunity factor that diminishes immunogenic fOSs derived from LLOs, acted through STT3B-OST as well. In summary, only STT3BOST hydrolyzes LLOs, depending upon LLO quality and acceptor site occupancy. TREX1 and STT3A suppress STT3B-OST-dependent fOSs. Without strict kinetic limitations during posttranslational N-glycosylation, STT3B-OST can thus moonlight for LLO hydrolysis. In contrast, the STT3A-OST/translocon complex preserves LLOs for temporally fastidious cotranslational N-glycosylation.",
keywords = "Dolichol, Glycosylation, Oligosaccharyltransferase, STT3A, STT3B",
author = "Hua Lu and Fermaintt, {Charles S.} and Cherepanova, {Natalia A.} and Gilmored Reid and Nan Yan and Lehrman, {Mark A.}",
year = "2018",
month = "9",
day = "18",
doi = "10.1073/pnas.1806034115",
language = "English (US)",
volume = "115",
pages = "9557--9562",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "38",

}

TY - JOUR

T1 - Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis

AU - Lu, Hua

AU - Fermaintt, Charles S.

AU - Cherepanova, Natalia A.

AU - Reid, Gilmored

AU - Yan, Nan

AU - Lehrman, Mark A.

PY - 2018/9/18

Y1 - 2018/9/18

N2 - Oligosaccharyltransferases (OSTs) N-glycosylate proteins by transferring oligosaccharides from lipid-linked oligosaccharides (LLOs) to asparaginyl residues of Asn-Xaa-Ser/Thr acceptor sequons. Mammals have OST isoforms with STT3A or STT3B catalytic subunits for cotranslational or posttranslational N-glycosylation, respectively. OSTs also hydrolyze LLOs, forming free oligosaccharides (fOSs). It has been unclear whether hydrolysis is due to one or both OSTs, segregated from N-glycosylation, and/or regulated. Transfer and hydrolysis were assayed in permeabilized HEK293 kidney and Huh7.5.1 liver cells lacking STT3A or STT3B. Transfer by both STT3A-OST and STT3B-OST with synthetic acceptors was robust. LLO hydrolysis by STT3B-OST was readily detected and surprisingly modulated:Without acceptors, STT3B-OST hydrolyzed Glc3Man9Glc-NAc2-LLO but not Man9GlcNAc2-LLO, yet it hydrolyzed both LLOs with acceptors present. In contrast, LLO hydrolysis by STT3A-OST was negligible. STT3A-OST however may be regulatory, because it suppressed STT3B-OST-dependent fOSs. TREX1, a negative innate immunity factor that diminishes immunogenic fOSs derived from LLOs, acted through STT3B-OST as well. In summary, only STT3BOST hydrolyzes LLOs, depending upon LLO quality and acceptor site occupancy. TREX1 and STT3A suppress STT3B-OST-dependent fOSs. Without strict kinetic limitations during posttranslational N-glycosylation, STT3B-OST can thus moonlight for LLO hydrolysis. In contrast, the STT3A-OST/translocon complex preserves LLOs for temporally fastidious cotranslational N-glycosylation.

AB - Oligosaccharyltransferases (OSTs) N-glycosylate proteins by transferring oligosaccharides from lipid-linked oligosaccharides (LLOs) to asparaginyl residues of Asn-Xaa-Ser/Thr acceptor sequons. Mammals have OST isoforms with STT3A or STT3B catalytic subunits for cotranslational or posttranslational N-glycosylation, respectively. OSTs also hydrolyze LLOs, forming free oligosaccharides (fOSs). It has been unclear whether hydrolysis is due to one or both OSTs, segregated from N-glycosylation, and/or regulated. Transfer and hydrolysis were assayed in permeabilized HEK293 kidney and Huh7.5.1 liver cells lacking STT3A or STT3B. Transfer by both STT3A-OST and STT3B-OST with synthetic acceptors was robust. LLO hydrolysis by STT3B-OST was readily detected and surprisingly modulated:Without acceptors, STT3B-OST hydrolyzed Glc3Man9Glc-NAc2-LLO but not Man9GlcNAc2-LLO, yet it hydrolyzed both LLOs with acceptors present. In contrast, LLO hydrolysis by STT3A-OST was negligible. STT3A-OST however may be regulatory, because it suppressed STT3B-OST-dependent fOSs. TREX1, a negative innate immunity factor that diminishes immunogenic fOSs derived from LLOs, acted through STT3B-OST as well. In summary, only STT3BOST hydrolyzes LLOs, depending upon LLO quality and acceptor site occupancy. TREX1 and STT3A suppress STT3B-OST-dependent fOSs. Without strict kinetic limitations during posttranslational N-glycosylation, STT3B-OST can thus moonlight for LLO hydrolysis. In contrast, the STT3A-OST/translocon complex preserves LLOs for temporally fastidious cotranslational N-glycosylation.

KW - Dolichol

KW - Glycosylation

KW - Oligosaccharyltransferase

KW - STT3A

KW - STT3B

UR - http://www.scopus.com/inward/record.url?scp=85053460710&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053460710&partnerID=8YFLogxK

U2 - 10.1073/pnas.1806034115

DO - 10.1073/pnas.1806034115

M3 - Article

VL - 115

SP - 9557

EP - 9562

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 38

ER -