Material aging causes centrosome weakening and disassembly during mitotic exit

Matthäus Mittasch, Vanna M. Tran, Manolo U. Rios, Anatol W. Fritsch, Stephen J. Enos, Beatriz Ferreira Gomes, Alec Bond, Moritz Kreysing, Jeffrey B. Woodruff

Research output: Contribution to journalArticlepeer-review


Centrosomes must resist microtubule-mediated forces for mitotic chromosome segregation. During mitotic exit, however, centrosomes are deformed and fractured by those same forces, which is a key step in centrosome disassembly. How the functional material properties of centrosomes change throughout the cell cycle, and how they are molecularly tuned remain unknown. Here, we used optically-induced flow perturbations to determine the molecular basis of centrosome strength and ductility in C. elegans embryos. We found that both properties declined sharply at anaphase onset, long before natural disassembly. This mechanical transition required PP2A phosphatase and correlated with inactivation of PLK-1 (Polo Kinase) and SPD-2 (Cep192). In vitro, PLK-1 and SPD-2 directly protected centrosome scaffolds from force-induced disassembly. Our results suggest that, prior to anaphase, PLK-1 and SPD-2 confer strength and ductility to the centrosome scaffold so that it can resist microtubule-pulling forces. In anaphase, centrosomes lose PLK-1 and SPD-2 and transition to a weak, brittle state that enables force-mediated centrosome disassembly.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Dec 5 2019

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Material aging causes centrosome weakening and disassembly during mitotic exit'. Together they form a unique fingerprint.

Cite this