Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes

J. Alfredo Blakeley-Ruiz, Alison R. Erickson, Brandi Cantarel, Weili Xiong, Rachel Adams, Janet K. Jansson, Claire M. Fraser, Robert L. Hettich

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Background: The gut microbiome plays a fundamental role in the human host's overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn's disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn's disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn's disease patients' post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. Results: The measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. Conclusions: The human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome's metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.

Original languageEnglish (US)
Article number18
JournalMicrobiome
Volume7
Issue number1
DOIs
StatePublished - Feb 11 2019

Fingerprint

Microbial Genome
Microbiota
Proteome
Crohn Disease
Microbial Genes
Health
Fermentation
Cluster Analysis
Proteins
Carbohydrates
Inflammation
Phenotype
Lipids
Amino Acids
Food
Gastrointestinal Microbiome
Enzymes

Keywords

  • Crohn's disease
  • Gut microbiome
  • Human microbiome
  • Longitudinal analyses
  • Metaproteomics
  • Microbial metabolic function

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Cite this

Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes. / Blakeley-Ruiz, J. Alfredo; Erickson, Alison R.; Cantarel, Brandi; Xiong, Weili; Adams, Rachel; Jansson, Janet K.; Fraser, Claire M.; Hettich, Robert L.

In: Microbiome, Vol. 7, No. 1, 18, 11.02.2019.

Research output: Contribution to journalArticle

Blakeley-Ruiz, J. Alfredo ; Erickson, Alison R. ; Cantarel, Brandi ; Xiong, Weili ; Adams, Rachel ; Jansson, Janet K. ; Fraser, Claire M. ; Hettich, Robert L. / Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes. In: Microbiome. 2019 ; Vol. 7, No. 1.
@article{86b1c2a6c938483e990d6800ecb0f044,
title = "Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes",
abstract = "Background: The gut microbiome plays a fundamental role in the human host's overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn's disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn's disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn's disease patients' post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. Results: The measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. Conclusions: The human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome's metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.",
keywords = "Crohn's disease, Gut microbiome, Human microbiome, Longitudinal analyses, Metaproteomics, Microbial metabolic function",
author = "Blakeley-Ruiz, {J. Alfredo} and Erickson, {Alison R.} and Brandi Cantarel and Weili Xiong and Rachel Adams and Jansson, {Janet K.} and Fraser, {Claire M.} and Hettich, {Robert L.}",
year = "2019",
month = "2",
day = "11",
doi = "10.1186/s40168-019-0631-8",
language = "English (US)",
volume = "7",
journal = "Microbiome",
issn = "2049-2618",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn's remission patients despite temporal variations in microbial taxa, genomes, and proteomes

AU - Blakeley-Ruiz, J. Alfredo

AU - Erickson, Alison R.

AU - Cantarel, Brandi

AU - Xiong, Weili

AU - Adams, Rachel

AU - Jansson, Janet K.

AU - Fraser, Claire M.

AU - Hettich, Robert L.

PY - 2019/2/11

Y1 - 2019/2/11

N2 - Background: The gut microbiome plays a fundamental role in the human host's overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn's disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn's disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn's disease patients' post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. Results: The measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. Conclusions: The human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome's metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.

AB - Background: The gut microbiome plays a fundamental role in the human host's overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn's disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn's disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn's disease patients' post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. Results: The measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. Conclusions: The human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome's metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.

KW - Crohn's disease

KW - Gut microbiome

KW - Human microbiome

KW - Longitudinal analyses

KW - Metaproteomics

KW - Microbial metabolic function

UR - http://www.scopus.com/inward/record.url?scp=85061395401&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85061395401&partnerID=8YFLogxK

U2 - 10.1186/s40168-019-0631-8

DO - 10.1186/s40168-019-0631-8

M3 - Article

VL - 7

JO - Microbiome

JF - Microbiome

SN - 2049-2618

IS - 1

M1 - 18

ER -