Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment

Enrique Balderas, David R. Eberhardt, Sandra Lee, John M. Pleinis, Salah Sommakia, Anthony M. Balynas, Xue Yin, Mitchell C. Parker, Colin T. Maguire, Scott Cho, Marta W. Szulik, Anna Bakhtina, Ryan D. Bia, Marisa W. Friederich, Timothy M. Locke, Johan L.K. Van Hove, Stavros G. Drakos, Yasemin Sancak, Martin Tristani-Firouzi, Sarah FranklinAylin R. Rodan, Dipayan Chaudhuri

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.

Original languageEnglish (US)
Article number2769
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment'. Together they form a unique fingerprint.

Cite this