Mitogen-activated protein kinase kinase signaling promotes growth and vascularization of fibrosarcoma

Yan Ding, Elissa A. Boguslawski, Bree D. Berghuis, John J. Young, Zhongfa Zhang, Kim Hardy, Kyle Furge, Eric Kort, Arthur E. Frankel, Rick V. Hay, James H. Resau, Nicholas S. Duesbery

Research output: Contribution to journalArticle

31 Scopus citations

Abstract

We hypothesized that signaling through multiple mitogen-activated protein kinase (MAPK) kinase (MKK) pathways is essential for the growth and vascularization of soft-tissue sarcomas, which are malignant tumors derived from mesenchymal tissues. We tested this using HT-1080, NCI, and Shac fibrosarcoma-derived cell lines and anthrax lethal toxin (LeTx), a bacterial toxin that inactivates MKKs. Western blots confirmed that LeTx treatment reduced the levels of phosphorylated extracellular signal-regulated kinase and p38 MAPK in vitro. Although short treatments with LeTx only modestly affected cell proliferation, sustained treatment markedly reduced cell numbers. LeTx also substantially inhibited the extracellular release of angioproliferative factors including vascular endothelial growth factor, interleukin-8, and basic fibroblast growth factor. Similar results were obtained with cell lines derived from malignant fibrous histiocytomas, leiomyosarcomas, and liposarcomas. In vivo, LeTx decreased MAPK activity and blocked fibrosarcoma growth. Growth inhibition correlated with decreased cellular proliferation and extensive necrosis, and it was accompanied by a decrease in tumor mean vessel density as well as a reduction in serum expression of angioproliferative cytokines. Vital imaging using high-resolution ultrasound enhanced with contrast microbubbles revealed that the effects of LeTx on tumor perfusion were remarkably rapid (<24 h) and resulted in a marked reduction of perfusion within the tumor but not in nontumor tissues. These results are consistent with our initial hypothesis and lead us to propose that MKK inhibition by LeTx is a broadly effective strategy for targeting neovascularization in fibrosarcomas and other similar proliferative lesions.

Original languageEnglish (US)
Pages (from-to)648-658
Number of pages11
JournalMolecular Cancer Therapeutics
Volume7
Issue number3
DOIs
StatePublished - Mar 1 2008

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Mitogen-activated protein kinase kinase signaling promotes growth and vascularization of fibrosarcoma'. Together they form a unique fingerprint.

  • Cite this

    Ding, Y., Boguslawski, E. A., Berghuis, B. D., Young, J. J., Zhang, Z., Hardy, K., Furge, K., Kort, E., Frankel, A. E., Hay, R. V., Resau, J. H., & Duesbery, N. S. (2008). Mitogen-activated protein kinase kinase signaling promotes growth and vascularization of fibrosarcoma. Molecular Cancer Therapeutics, 7(3), 648-658. https://doi.org/10.1158/1535-7163.MCT-07-2229