Mitogenomes of Giant-Skipper Butterflies reveal an ancient split between deep and shallow root feeders

Nick V. Grishin, Jing Zhang, Qian Cong, Xiao Ling Fan, Rongjiang Wang, Min Wang

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Background: Giant-Skipper butterflies from the genus Megathymus are North American endemics. These large and thick-bodied Skippers resemble moths and are unique in their life cycles. Grub-like at the later stages of development, caterpillars of these species feed and live inside yucca roots. Adults do not feed and are mostly local, not straying far from the patches of yucca plants. Methods: Pieces of muscle were dissected from the thorax of specimens and genomic DNA was extracted (also from the abdomen of a specimen collected nearly 60 years ago). Paired-end libraries were prepared and sequenced for 150bp from both ends. The mitogenomes were assembled from the reads followed by a manual gap-closing procedure and a phylogenetic tree was constructed using a maximum likelihood method from an alignment of the mitogenomes. Results: We determined mitogenome sequences of nominal subspecies of all five known species of Megathymus and Agathymus mariae to confidently root the phylogenetic tree. Pairwise sequence identity indicates the high similarity, ranging from 88-96% among coding regions for 13 proteins, 22 tRNAs and 2 rRNA, with a gene order typical for mitogenomes of Lepidoptera. Phylogenetic analysis confirms that Giant-Skippers (Megathymini) originate within the subfamily Hesperiinae and do not warrant a subfamily rank. Genus Megathymus is monophyletic and splits into two species groups. M. streckeri and M. cofaqui caterpillars feed deep in the main root system of yucca plants and deposit frass underground. M. ursus, M. beulahae and M. yuccae feed in the yucca caudex and roots near the ground, and deposit frass outside through a "tent" (a silk tube projecting from the center of yucca plant). M. yuccae and M. beulahae are sister species consistently with morphological similarities between them. Conclusions: We constructed the first DNA-based phylogeny of the genus Megathymus from their mitogenomes. The phylogeny agrees with morphological considerations.

Original languageEnglish (US)
Article number222
JournalF1000Research
Volume6
DOIs
StatePublished - 2017

Keywords

  • Hesperiidae
  • Megathymini
  • Mitochondria
  • Phylogeny
  • Sequence assembly

ASJC Scopus subject areas

  • General Immunology and Microbiology
  • General Pharmacology, Toxicology and Pharmaceutics
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Mitogenomes of Giant-Skipper Butterflies reveal an ancient split between deep and shallow root feeders'. Together they form a unique fingerprint.

Cite this