Molecular architecture of the 40S · eIF1 · eIF3 translation initiation complex

Jan P. Erzberger, Florian Stengel, Riccardo Pellarin, Suyang Zhang, Tanja Schaefer, Christopher H.S. Aylett, Peter Cimermančič, Daniel Boehringer, Andrej Sali, Ruedi Aebersold, Nenad Ban

Research output: Contribution to journalArticle

128 Scopus citations

Abstract

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40SâeIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.

Original languageEnglish (US)
Pages (from-to)1123-1135
Number of pages13
JournalCell
Volume158
Issue number5
DOIs
StatePublished - Aug 28 2014

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Molecular architecture of the 40S · eIF1 · eIF3 translation initiation complex'. Together they form a unique fingerprint.

  • Cite this

    Erzberger, J. P., Stengel, F., Pellarin, R., Zhang, S., Schaefer, T., Aylett, C. H. S., Cimermančič, P., Boehringer, D., Sali, A., Aebersold, R., & Ban, N. (2014). Molecular architecture of the 40S · eIF1 · eIF3 translation initiation complex. Cell, 158(5), 1123-1135. https://doi.org/10.1016/j.cell.2014.07.044