Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system

Yu Dong Zhou, Mary Barnard, Hui Tian, Xu Li, Huijun Z. Ring, Uta Francke, John Shelton, James Richardson, David W. Russell, Steven L. Mcknight

Research output: Contribution to journalArticlepeer-review

171 Scopus citations

Abstract

Here we describe two mammalian transcription factors selectively expressed in the central nervous system. Both proteins, neuronal PAS domain protein (NPAS) 1 and NPAS2, are members of the basic helix-loop-helix-PAS family of transcription factors. cDNAs encoding mouse and human forms of NPAS1 and NPAS2 have been isolated and sequenced. RNA blotting assays demonstrated the selective presence of NPAS1 and NPAS2 mRNAs in brain and spinal cord tissues of adult mice. NPAS1 mRNA was first detected at embryonic day 15 of mouse development, shortly after early organogenesis of the brain. NPAS2 mRNA was first detected during early postnatal development of the mouse brain. In situ hybridization assays using brain tissue of postnatal mice revealed an exclusively neuronal pattern of expression for NPAS1 and NPAS2 mRNAs. The human NPAS1 gene was mapped to chromosome 19q13.2-q13.3, and the mouse Npas1 gene to chromosome 7 at 2 centimorgans. Similarly, the human NPAS2 gene was assigned to chromosome 2p11.2-2q13, and the mouse Npas2 gene to chromosome 1 at 21-22 centimorgans. The chromosomal regions to which human NPAS1 and NPAS2 map are syntenic with those containing the mouse Npas1 and Npas2 genes, indicating that the mouse and human genes are true homologs.

Original languageEnglish (US)
Pages (from-to)713-718
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume94
Issue number2
DOIs
StatePublished - Jan 21 1997

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system'. Together they form a unique fingerprint.

Cite this