Molecular cloning and characterization of a caenorhabditis elegans al,3 fucosyltransferase gene

R. A. Debose-Boyd, A. K. Nyame, R. D. Cummings

Research output: Contribution to journalArticle

Abstract

The helminthic parasite, Schistosoma mansoni, synthesizes fucosylated glycans bearing Lewis X (GalI,4[FucI,3]GlcNAc-R) and fucosylated LacDiNAc (GalNAc/31,4[Fucc1,3]GlcNAc-R) determinants. We have focused our attention on the enzymes responsible for the synthesis of these structures. An 1,3 fucosyltransferase ((M,3 FT) in schistosomes has been identified and characterized. The schistosome 1,3 FT exhibits properties similar to the (1,3 FT in human myeloid cells, termed fucosyltransferase IV (FTIV). In light of the possible involvement of fucosylated glycans in host/parasite interactions, we have extended our studies to other helminths, both parasitic and nonparasitic. We previously identified an c1,3 FT in extracts of the parasitic nematode,Haemonchus contortus, which infect sheep. Like the schistosome enzyme, the H. contortus 1,3 FT displays enzymatic properties closely resembling those of human FTIV. In the present study, we report the identification, molecular cloning, and characterization of an al,3 FT from the non-parasitic helminth Caenorhabditis elegans. The enzyme is homologous to the al,3 FTs found in H. contortus and S. mansoni. The discovery of al,3 fucosylation in C. elegans opens the possibility of using this well-studied nematode as a model system to study the role of fucosylated glycans in the development and/or survival of helminths.

Original languageEnglish (US)
JournalFASEB Journal
Volume11
Issue number9
StatePublished - 1997

Fingerprint

galactoside 3-fucosyltransferase
Schistosoma
Cloning
Haemonchus contortus
Caenorhabditis elegans
Molecular Cloning
helminths
molecular cloning
polysaccharides
Schistosoma mansoni
Genes
enzymes
Helminths
animal parasitic nematodes
Fucosyltransferases
genes
Polysaccharides
host-parasite relationships
Nematoda
Bearings (structural)

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology

Cite this

Molecular cloning and characterization of a caenorhabditis elegans al,3 fucosyltransferase gene. / Debose-Boyd, R. A.; Nyame, A. K.; Cummings, R. D.

In: FASEB Journal, Vol. 11, No. 9, 1997.

Research output: Contribution to journalArticle

@article{9e8175daf37f43cb9cce39ccefacc836,
title = "Molecular cloning and characterization of a caenorhabditis elegans al,3 fucosyltransferase gene",
abstract = "The helminthic parasite, Schistosoma mansoni, synthesizes fucosylated glycans bearing Lewis X (GalI,4[FucI,3]GlcNAc-R) and fucosylated LacDiNAc (GalNAc/31,4[Fucc1,3]GlcNAc-R) determinants. We have focused our attention on the enzymes responsible for the synthesis of these structures. An 1,3 fucosyltransferase ((M,3 FT) in schistosomes has been identified and characterized. The schistosome 1,3 FT exhibits properties similar to the (1,3 FT in human myeloid cells, termed fucosyltransferase IV (FTIV). In light of the possible involvement of fucosylated glycans in host/parasite interactions, we have extended our studies to other helminths, both parasitic and nonparasitic. We previously identified an c1,3 FT in extracts of the parasitic nematode,Haemonchus contortus, which infect sheep. Like the schistosome enzyme, the H. contortus 1,3 FT displays enzymatic properties closely resembling those of human FTIV. In the present study, we report the identification, molecular cloning, and characterization of an al,3 FT from the non-parasitic helminth Caenorhabditis elegans. The enzyme is homologous to the al,3 FTs found in H. contortus and S. mansoni. The discovery of al,3 fucosylation in C. elegans opens the possibility of using this well-studied nematode as a model system to study the role of fucosylated glycans in the development and/or survival of helminths.",
author = "Debose-Boyd, {R. A.} and Nyame, {A. K.} and Cummings, {R. D.}",
year = "1997",
language = "English (US)",
volume = "11",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "FASEB",
number = "9",

}

TY - JOUR

T1 - Molecular cloning and characterization of a caenorhabditis elegans al,3 fucosyltransferase gene

AU - Debose-Boyd, R. A.

AU - Nyame, A. K.

AU - Cummings, R. D.

PY - 1997

Y1 - 1997

N2 - The helminthic parasite, Schistosoma mansoni, synthesizes fucosylated glycans bearing Lewis X (GalI,4[FucI,3]GlcNAc-R) and fucosylated LacDiNAc (GalNAc/31,4[Fucc1,3]GlcNAc-R) determinants. We have focused our attention on the enzymes responsible for the synthesis of these structures. An 1,3 fucosyltransferase ((M,3 FT) in schistosomes has been identified and characterized. The schistosome 1,3 FT exhibits properties similar to the (1,3 FT in human myeloid cells, termed fucosyltransferase IV (FTIV). In light of the possible involvement of fucosylated glycans in host/parasite interactions, we have extended our studies to other helminths, both parasitic and nonparasitic. We previously identified an c1,3 FT in extracts of the parasitic nematode,Haemonchus contortus, which infect sheep. Like the schistosome enzyme, the H. contortus 1,3 FT displays enzymatic properties closely resembling those of human FTIV. In the present study, we report the identification, molecular cloning, and characterization of an al,3 FT from the non-parasitic helminth Caenorhabditis elegans. The enzyme is homologous to the al,3 FTs found in H. contortus and S. mansoni. The discovery of al,3 fucosylation in C. elegans opens the possibility of using this well-studied nematode as a model system to study the role of fucosylated glycans in the development and/or survival of helminths.

AB - The helminthic parasite, Schistosoma mansoni, synthesizes fucosylated glycans bearing Lewis X (GalI,4[FucI,3]GlcNAc-R) and fucosylated LacDiNAc (GalNAc/31,4[Fucc1,3]GlcNAc-R) determinants. We have focused our attention on the enzymes responsible for the synthesis of these structures. An 1,3 fucosyltransferase ((M,3 FT) in schistosomes has been identified and characterized. The schistosome 1,3 FT exhibits properties similar to the (1,3 FT in human myeloid cells, termed fucosyltransferase IV (FTIV). In light of the possible involvement of fucosylated glycans in host/parasite interactions, we have extended our studies to other helminths, both parasitic and nonparasitic. We previously identified an c1,3 FT in extracts of the parasitic nematode,Haemonchus contortus, which infect sheep. Like the schistosome enzyme, the H. contortus 1,3 FT displays enzymatic properties closely resembling those of human FTIV. In the present study, we report the identification, molecular cloning, and characterization of an al,3 FT from the non-parasitic helminth Caenorhabditis elegans. The enzyme is homologous to the al,3 FTs found in H. contortus and S. mansoni. The discovery of al,3 fucosylation in C. elegans opens the possibility of using this well-studied nematode as a model system to study the role of fucosylated glycans in the development and/or survival of helminths.

UR - http://www.scopus.com/inward/record.url?scp=33750228039&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33750228039&partnerID=8YFLogxK

M3 - Article

VL - 11

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - 9

ER -