Molecular Cloning of a Dendritic Cell-associated Transmembrane Protein, DC-HIL, That Promotes RGD-dependent Adhesion of Endothelial Cells through Recognition of Heparan Sulfate Proteoglycans

Sojin Shikano, Makoto Bonkobara, Paul K. Zukas, Kiyoshi Ariizumi

Research output: Contribution to journalArticle

130 Citations (Scopus)

Abstract

We isolated a novel molecule (DC-HIL) expressed abundantly by the XS52 dendritic cell (DC) line and epidermal Langerhans cells, but minimally by other cell lines. DC-HIL is a type I transmembrane protein that contains a heparin-binding motif and an integrin-recognition motif, RGD, in its extracellular domain (ECD). A soluble fusion protein (DC-HIL-Fc) of the ECD and an immunoglobulin Fc bound to the surface of an endothelial cell line (SVEC). This binding induced adhesion of SVEC to its immobilized form. Sulfated polysaccharides (e.g. heparin and fucoidan) inhibited binding of soluble DC-HIL-Fc and adhesion of SVEC. By contrast, an integrin inhibitor (RGDS tetramer) had no effect on binding to SVEC, but prevented adhesion of SVEC. This differential RGD requirement was confirmed by the finding that DC-HIL-Fc mutant lacking the RGD motif can bind to SVEC but is unable to induce adhesion of SVEC. Furthermore, DC-HIL appears to recognize directly these sulfated polysaccharides. These results suggest that DC-HIL binds to SVEC by recognizing heparan sulfate proteoglycans on endothelial cells, thereby inducing adhesion of SVEC in an RGD-dependent manner. We propose that DC-HIL serves as a DC-associated, heparan sulfate proteoglycan-dependent integrin ligand, which may be involved in transendothelial migration of DC.

Original languageEnglish (US)
Pages (from-to)8125-8134
Number of pages10
JournalJournal of Biological Chemistry
Volume276
Issue number11
DOIs
StatePublished - Mar 16 2001

Fingerprint

Heparan Sulfate Proteoglycans
Cloning
Endothelial cells
Molecular Cloning
Dendritic Cells
Adhesion
Endothelial Cells
Proteins
Integrins
Cell Line
Polysaccharides
Heparin
Immunoglobulin Fc Fragments
Transendothelial and Transepithelial Migration
Langerhans Cells
Fusion reactions
Cells

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{eb87f41cf97342299510de849d5a7ed8,
title = "Molecular Cloning of a Dendritic Cell-associated Transmembrane Protein, DC-HIL, That Promotes RGD-dependent Adhesion of Endothelial Cells through Recognition of Heparan Sulfate Proteoglycans",
abstract = "We isolated a novel molecule (DC-HIL) expressed abundantly by the XS52 dendritic cell (DC) line and epidermal Langerhans cells, but minimally by other cell lines. DC-HIL is a type I transmembrane protein that contains a heparin-binding motif and an integrin-recognition motif, RGD, in its extracellular domain (ECD). A soluble fusion protein (DC-HIL-Fc) of the ECD and an immunoglobulin Fc bound to the surface of an endothelial cell line (SVEC). This binding induced adhesion of SVEC to its immobilized form. Sulfated polysaccharides (e.g. heparin and fucoidan) inhibited binding of soluble DC-HIL-Fc and adhesion of SVEC. By contrast, an integrin inhibitor (RGDS tetramer) had no effect on binding to SVEC, but prevented adhesion of SVEC. This differential RGD requirement was confirmed by the finding that DC-HIL-Fc mutant lacking the RGD motif can bind to SVEC but is unable to induce adhesion of SVEC. Furthermore, DC-HIL appears to recognize directly these sulfated polysaccharides. These results suggest that DC-HIL binds to SVEC by recognizing heparan sulfate proteoglycans on endothelial cells, thereby inducing adhesion of SVEC in an RGD-dependent manner. We propose that DC-HIL serves as a DC-associated, heparan sulfate proteoglycan-dependent integrin ligand, which may be involved in transendothelial migration of DC.",
author = "Sojin Shikano and Makoto Bonkobara and Zukas, {Paul K.} and Kiyoshi Ariizumi",
year = "2001",
month = "3",
day = "16",
doi = "10.1074/jbc.M008539200",
language = "English (US)",
volume = "276",
pages = "8125--8134",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "11",

}

TY - JOUR

T1 - Molecular Cloning of a Dendritic Cell-associated Transmembrane Protein, DC-HIL, That Promotes RGD-dependent Adhesion of Endothelial Cells through Recognition of Heparan Sulfate Proteoglycans

AU - Shikano, Sojin

AU - Bonkobara, Makoto

AU - Zukas, Paul K.

AU - Ariizumi, Kiyoshi

PY - 2001/3/16

Y1 - 2001/3/16

N2 - We isolated a novel molecule (DC-HIL) expressed abundantly by the XS52 dendritic cell (DC) line and epidermal Langerhans cells, but minimally by other cell lines. DC-HIL is a type I transmembrane protein that contains a heparin-binding motif and an integrin-recognition motif, RGD, in its extracellular domain (ECD). A soluble fusion protein (DC-HIL-Fc) of the ECD and an immunoglobulin Fc bound to the surface of an endothelial cell line (SVEC). This binding induced adhesion of SVEC to its immobilized form. Sulfated polysaccharides (e.g. heparin and fucoidan) inhibited binding of soluble DC-HIL-Fc and adhesion of SVEC. By contrast, an integrin inhibitor (RGDS tetramer) had no effect on binding to SVEC, but prevented adhesion of SVEC. This differential RGD requirement was confirmed by the finding that DC-HIL-Fc mutant lacking the RGD motif can bind to SVEC but is unable to induce adhesion of SVEC. Furthermore, DC-HIL appears to recognize directly these sulfated polysaccharides. These results suggest that DC-HIL binds to SVEC by recognizing heparan sulfate proteoglycans on endothelial cells, thereby inducing adhesion of SVEC in an RGD-dependent manner. We propose that DC-HIL serves as a DC-associated, heparan sulfate proteoglycan-dependent integrin ligand, which may be involved in transendothelial migration of DC.

AB - We isolated a novel molecule (DC-HIL) expressed abundantly by the XS52 dendritic cell (DC) line and epidermal Langerhans cells, but minimally by other cell lines. DC-HIL is a type I transmembrane protein that contains a heparin-binding motif and an integrin-recognition motif, RGD, in its extracellular domain (ECD). A soluble fusion protein (DC-HIL-Fc) of the ECD and an immunoglobulin Fc bound to the surface of an endothelial cell line (SVEC). This binding induced adhesion of SVEC to its immobilized form. Sulfated polysaccharides (e.g. heparin and fucoidan) inhibited binding of soluble DC-HIL-Fc and adhesion of SVEC. By contrast, an integrin inhibitor (RGDS tetramer) had no effect on binding to SVEC, but prevented adhesion of SVEC. This differential RGD requirement was confirmed by the finding that DC-HIL-Fc mutant lacking the RGD motif can bind to SVEC but is unable to induce adhesion of SVEC. Furthermore, DC-HIL appears to recognize directly these sulfated polysaccharides. These results suggest that DC-HIL binds to SVEC by recognizing heparan sulfate proteoglycans on endothelial cells, thereby inducing adhesion of SVEC in an RGD-dependent manner. We propose that DC-HIL serves as a DC-associated, heparan sulfate proteoglycan-dependent integrin ligand, which may be involved in transendothelial migration of DC.

UR - http://www.scopus.com/inward/record.url?scp=0035896629&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035896629&partnerID=8YFLogxK

U2 - 10.1074/jbc.M008539200

DO - 10.1074/jbc.M008539200

M3 - Article

C2 - 11114299

AN - SCOPUS:0035896629

VL - 276

SP - 8125

EP - 8134

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 11

ER -