Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3

Stefan Paula, Nancy Monson, William James Ball

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The amino acid sequences of the heavy- and light-chain variable regions of the high-affinity human sequence antidigoxin monoclonal antibody 1B3 (mAb 1B3) were determined, and a structural model for the mAb's variable region was developed by homology modeling techniques. The structural model provided the basis for computationally docking digoxin and eight related cardiac glycosides into the putative binding site of mAb 1B3. Analysis of the consensus binding mode obtained for digoxin showed that the cardenolide moiety of digoxin is deeply embedded in a predominantly hydrophobic, narrow cavity, whereas the terminal, γ-carbohydrate group is solvent-exposed. The docking results indicated that the primary driving forces for digoxin binding by mAb 1B3 are hydrophobic interactions with the digoxin steroid ring system and hydrogen bonds with the digitoxose groups. The binding model accounts for the experimentally observed variations in mAb 1B3 binding affinity for various structural analogs of digoxin used previously to develop a 3D structure-activity relationship model of drug binding (Farr CD, Tabet MR, Ball WJ Jr, Fishwild DM, Wang X, Nair AC, Welsh WJ. Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis. J Med Chem 2002;45:3257-3270). In particular, the hydrogen bond pattern is consistent with the unique sensitivity of mAb 1B3's binding affinity to the number of sugar residues present in a cardiac glycoside. The hydrophobic environment about the steroid moiety of digoxin is compatible with the mAb's reduced affinity for ligands that possess hydrophilic hydroxyl and acetyl group modifications in this region. The model also indicated that most of the amino acid residues in contact with the ligand reside in or about the three complementarity determining regions (CDRs) of the heavy chain and the third CDR of the light chain. A comparison of the 1B3 binding model with the crystal structures of two murine antidigoxin mAbs revealed similar binding patterns used by the three mAbs, such as a high frequency of occurrence of aromatic, hydrophobic residues in the CDRs and a dominant role of the heavy chain CDR3 in antigen binding.

Original languageEnglish (US)
Pages (from-to)382-391
Number of pages10
JournalProteins: Structure, Function and Genetics
Volume60
Issue number3
DOIs
StatePublished - Aug 15 2005

Fingerprint

Cardiac Glycosides
Molecular modeling
Digoxin
Monoclonal Antibodies
Complementarity Determining Regions
Structural Models
Ligands
Hydrogen
Hydrogen bonds
Cardenolides
Steroids
Light
Amino Acids
Quantitative Structure-Activity Relationship
Structure-Activity Relationship
Hydrophobic and Hydrophilic Interactions
Sugars
Hydroxyl Radical
Amino Acid Sequence
Crystal structure

Keywords

  • Antibody homology modeling
  • Computational docking
  • Congestive heart failure
  • Digitalis
  • Digitalis binding
  • Digitalis immunotherapy
  • Digoxin

ASJC Scopus subject areas

  • Genetics
  • Structural Biology
  • Biochemistry

Cite this

Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3. / Paula, Stefan; Monson, Nancy; Ball, William James.

In: Proteins: Structure, Function and Genetics, Vol. 60, No. 3, 15.08.2005, p. 382-391.

Research output: Contribution to journalArticle

@article{72aead93b7744c1e9ea8c2aaddae7453,
title = "Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3",
abstract = "The amino acid sequences of the heavy- and light-chain variable regions of the high-affinity human sequence antidigoxin monoclonal antibody 1B3 (mAb 1B3) were determined, and a structural model for the mAb's variable region was developed by homology modeling techniques. The structural model provided the basis for computationally docking digoxin and eight related cardiac glycosides into the putative binding site of mAb 1B3. Analysis of the consensus binding mode obtained for digoxin showed that the cardenolide moiety of digoxin is deeply embedded in a predominantly hydrophobic, narrow cavity, whereas the terminal, γ-carbohydrate group is solvent-exposed. The docking results indicated that the primary driving forces for digoxin binding by mAb 1B3 are hydrophobic interactions with the digoxin steroid ring system and hydrogen bonds with the digitoxose groups. The binding model accounts for the experimentally observed variations in mAb 1B3 binding affinity for various structural analogs of digoxin used previously to develop a 3D structure-activity relationship model of drug binding (Farr CD, Tabet MR, Ball WJ Jr, Fishwild DM, Wang X, Nair AC, Welsh WJ. Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis. J Med Chem 2002;45:3257-3270). In particular, the hydrogen bond pattern is consistent with the unique sensitivity of mAb 1B3's binding affinity to the number of sugar residues present in a cardiac glycoside. The hydrophobic environment about the steroid moiety of digoxin is compatible with the mAb's reduced affinity for ligands that possess hydrophilic hydroxyl and acetyl group modifications in this region. The model also indicated that most of the amino acid residues in contact with the ligand reside in or about the three complementarity determining regions (CDRs) of the heavy chain and the third CDR of the light chain. A comparison of the 1B3 binding model with the crystal structures of two murine antidigoxin mAbs revealed similar binding patterns used by the three mAbs, such as a high frequency of occurrence of aromatic, hydrophobic residues in the CDRs and a dominant role of the heavy chain CDR3 in antigen binding.",
keywords = "Antibody homology modeling, Computational docking, Congestive heart failure, Digitalis, Digitalis binding, Digitalis immunotherapy, Digoxin",
author = "Stefan Paula and Nancy Monson and Ball, {William James}",
year = "2005",
month = "8",
day = "15",
doi = "10.1002/prot.20484",
language = "English (US)",
volume = "60",
pages = "382--391",
journal = "Proteins: Structure, Function and Bioinformatics",
issn = "0887-3585",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3

AU - Paula, Stefan

AU - Monson, Nancy

AU - Ball, William James

PY - 2005/8/15

Y1 - 2005/8/15

N2 - The amino acid sequences of the heavy- and light-chain variable regions of the high-affinity human sequence antidigoxin monoclonal antibody 1B3 (mAb 1B3) were determined, and a structural model for the mAb's variable region was developed by homology modeling techniques. The structural model provided the basis for computationally docking digoxin and eight related cardiac glycosides into the putative binding site of mAb 1B3. Analysis of the consensus binding mode obtained for digoxin showed that the cardenolide moiety of digoxin is deeply embedded in a predominantly hydrophobic, narrow cavity, whereas the terminal, γ-carbohydrate group is solvent-exposed. The docking results indicated that the primary driving forces for digoxin binding by mAb 1B3 are hydrophobic interactions with the digoxin steroid ring system and hydrogen bonds with the digitoxose groups. The binding model accounts for the experimentally observed variations in mAb 1B3 binding affinity for various structural analogs of digoxin used previously to develop a 3D structure-activity relationship model of drug binding (Farr CD, Tabet MR, Ball WJ Jr, Fishwild DM, Wang X, Nair AC, Welsh WJ. Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis. J Med Chem 2002;45:3257-3270). In particular, the hydrogen bond pattern is consistent with the unique sensitivity of mAb 1B3's binding affinity to the number of sugar residues present in a cardiac glycoside. The hydrophobic environment about the steroid moiety of digoxin is compatible with the mAb's reduced affinity for ligands that possess hydrophilic hydroxyl and acetyl group modifications in this region. The model also indicated that most of the amino acid residues in contact with the ligand reside in or about the three complementarity determining regions (CDRs) of the heavy chain and the third CDR of the light chain. A comparison of the 1B3 binding model with the crystal structures of two murine antidigoxin mAbs revealed similar binding patterns used by the three mAbs, such as a high frequency of occurrence of aromatic, hydrophobic residues in the CDRs and a dominant role of the heavy chain CDR3 in antigen binding.

AB - The amino acid sequences of the heavy- and light-chain variable regions of the high-affinity human sequence antidigoxin monoclonal antibody 1B3 (mAb 1B3) were determined, and a structural model for the mAb's variable region was developed by homology modeling techniques. The structural model provided the basis for computationally docking digoxin and eight related cardiac glycosides into the putative binding site of mAb 1B3. Analysis of the consensus binding mode obtained for digoxin showed that the cardenolide moiety of digoxin is deeply embedded in a predominantly hydrophobic, narrow cavity, whereas the terminal, γ-carbohydrate group is solvent-exposed. The docking results indicated that the primary driving forces for digoxin binding by mAb 1B3 are hydrophobic interactions with the digoxin steroid ring system and hydrogen bonds with the digitoxose groups. The binding model accounts for the experimentally observed variations in mAb 1B3 binding affinity for various structural analogs of digoxin used previously to develop a 3D structure-activity relationship model of drug binding (Farr CD, Tabet MR, Ball WJ Jr, Fishwild DM, Wang X, Nair AC, Welsh WJ. Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis. J Med Chem 2002;45:3257-3270). In particular, the hydrogen bond pattern is consistent with the unique sensitivity of mAb 1B3's binding affinity to the number of sugar residues present in a cardiac glycoside. The hydrophobic environment about the steroid moiety of digoxin is compatible with the mAb's reduced affinity for ligands that possess hydrophilic hydroxyl and acetyl group modifications in this region. The model also indicated that most of the amino acid residues in contact with the ligand reside in or about the three complementarity determining regions (CDRs) of the heavy chain and the third CDR of the light chain. A comparison of the 1B3 binding model with the crystal structures of two murine antidigoxin mAbs revealed similar binding patterns used by the three mAbs, such as a high frequency of occurrence of aromatic, hydrophobic residues in the CDRs and a dominant role of the heavy chain CDR3 in antigen binding.

KW - Antibody homology modeling

KW - Computational docking

KW - Congestive heart failure

KW - Digitalis

KW - Digitalis binding

KW - Digitalis immunotherapy

KW - Digoxin

UR - http://www.scopus.com/inward/record.url?scp=23044467529&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=23044467529&partnerID=8YFLogxK

U2 - 10.1002/prot.20484

DO - 10.1002/prot.20484

M3 - Article

C2 - 15971203

AN - SCOPUS:23044467529

VL - 60

SP - 382

EP - 391

JO - Proteins: Structure, Function and Bioinformatics

JF - Proteins: Structure, Function and Bioinformatics

SN - 0887-3585

IS - 3

ER -